The Comparison of Performance Polycrystalline and Amorphous Solar Panels under Malang City Weather Conditions
DOI:
https://doi.org/10.51278/bse.v1i2.107Keywords:
Monocrystalline, Polycrystalline, Normalized Power Output Efficiency, Performance RatioAbstract
Amorphous Silicon type solar panels, which had a bad reputation in the past, are now considered very reliable, with several significant advantages over Mono Crystalline and Polycrystalline solar panels. Research on the effectiveness of the capture power of Amorphous Silicon compared to Silicon Crystalline solar panels types is still not much done.The purpose of this study was to explain the effect of solar radiation on the capture power of polycrystalline and amorphous solar panels.This research method includes solar panel installation, measurement of solar radiation, measurement of the resulting current and voltage, data analysis, discussion, and conclusions. The independent variables of the study were the resulting current and voltage, and the type of solar panels (Polycrystalline and Amorphous). The dependent variable of this research are actual power and efficiency.The results showed that the greater the solar radiation, the higher the actual power and efficiency produced by the solar panels. Polycrystalline type solar panels are capable of producing higher average actual power and average efficiency, namely 86.83 W and 11.92%, compared to amorphous solar panels, namely 43.88 W and 6.01%.
Keywords: Monocrystalline, Polycrystalline, Normalized Power Output Efficiency, Performance Ratio
References
Andriawan, AH &Slamet, P2017, ‘Tegangan Keluaran Solar Cell Type Monocrystalline Sebagai Dasar Pertimbangan Pembangkit Tenaga Surya’, Jurnal Penelitian LPPM, Untag Surabaya, September 2017, Vol.02, No. 01, hal 39– 45.
Bayrak, F, Ertürk, G, Oztop, HF 2017, ‘Effects of partial shading on energy and exergy efficiencies for photovoltaic panels’, J. Clean Prod. 164, 58–69.
Darmanto,M. dan Yohana, Eflita. 2011. Uji Eksperimental Pengaruh Sudut Kemiringan Modul Surya 50 Watt-Peak Dengan Posisi Mengikuti Pergerakan Arah Matahari.Undergraduate Thesis, Mechanical Engineering Departement, Faculty Engineering of Diponegoro University.
Duffie, JA & Beckman, WA 2006, Solar Engineering of Thermal Processes, 3rd Edition. John Wiley and Sons Inc, New York, John Wiley and Sons, pp. 928.
El-Adaw, MK & Ed Shalaby, SA2015,‘Effect of Solar Cell Temperature on its Photovoltaic Conversion Efficiency’, International Journal of Scientific & Engineering Research, Vol.6, Issue 3, ISSN 2229-5518.
Green, MA 1995, Silicon Solar Cells : Advanced Principles and Practice, Bridge Printery, Sydney.
Jansen, TJ, Arismunandar, W 1985,Solar Engineering Technology (Teknologi Rekayasa Surya), PT. Pradnya Paramita Press, Jakarta.
Khwee, KH2013,‘Pengaruh Temperatur Terhadap Kapasitas Daya Panel Surya (Studi Kasus: Pontianak)’, Jurnal ELKHA Vol.5, No 2, Oktober 2013.
Muchammad, M., & Yohana, E. 2010. Pengaruh Suhu Permukaan Photovoltaic Module 50 Watt Peak Terhadap Daya Keluaran Yang Dihasilkan Menggunakan Reflektor Dengan Variasi Sudut Reflektor. ROTASI, 12(3), 14-18.
Nogueira, CAC, Bedin, J, Niedzialkoski, RK, de Souza, SNM & Neves, JCM 2015,’Performance of monocrystalline and polycrystalline solar panels in a water pumping system in Brazil’, Renewable and Sustainable Energy Reviews, Vol.51, pp 1610–1616.
Rizali, M & Irwandy, 2015,’Pengaruh Temperatur Permukaan Sel Surya Terhadap Daya pada Kondisi Eksperimental dan Nyata’, Proceeding Seminar Nasional Tahunan Teknik Mesin XIV (SNTTM XIV), Banjarmasin, 7-8 Oktober 2015.
Suryana, D & Ali, MM 2016,’Pengaruh temperatur/suhu terhadap tegangan yang dihasilkan panel surya jenis monokristalin (studi kasus: Baristand Industri Surabaya’, Jurnal Teknologi Proses dan Inovasi Industri, Vol. 02, No.1, November 2016.
Ya’acob M.E, Hizam H, Bakri M 2014, ‘Performance Test Conditions for Direct TemperatureElements of Multiple PV Array configurations in Malaysia’, Energy Procedia 61 ( 2014 ) 2387 – 2390.