

The Influence of Students' Engagement on Learning Comprehension of Maritime Insurance Course

Langandriansyah Dwi Yatno

Politeknik Pelayaran Sumatera Barat, Indonesia

l4n9an@gmail.com

Abstract

This study examines the influence of students' engagement on learning comprehension in the Maritime Insurance course at Politeknik Pelayaran Sumatera Barat. Motivated by concerns about vocational learning effectiveness and graduates' professional readiness, the study's primary objective was to test whether students' engagement affects learning comprehension and to quantify the magnitude of this effect. A quantitative, comparative design was employed using an independent-samples t-test to compare two groups defined by engagement level. The population comprised 153 students enrolled in the Marine Transportation program for the 2025/2026 academic year; samples were selected via quota-based random sampling, yielding two groups of 103 respondents each. The t-test results showed $t\text{-calculated} = 24.578$ versus $t\text{-critical} = 1.66$ with $p < 0.05$, leading to acceptance of the hypothesis that students' engagement significantly influences learning comprehension. Effect-size analysis produced Cohen's $d = 3.43$, indicating a very large practical effect and substantial mean differences between groups with differing engagement levels. These findings underscore the importance of active learning strategies and interventions that enhance behavioral, emotional, and cognitive engagement to strengthen conceptual mastery and workplace readiness in maritime contexts; practical implications include integrating claims simulations, authentic tasks, and targeted formative feedback. The study recommends future research employing objective outcome measures and longitudinal or experimental designs to improve generalizability and clarify causal mechanisms.

ARTICLE INFO

Article history:

Received

August 10, 2025

Revised

October 28, 2025

Accepted

November 17, 2025

Keywords: Students' Engagement, Learning Comprehension, Maritime Insurance Course

Published by

Website

ISSN

Copyright

CV. Creative Tugu Pena

<https://attractivejournal.com/index.php/bpr>

2775-2305

This is an open access article under the CC BY SA license

<https://creativecommons.org/licenses/by-sa/4.0/>

@ 2025 by the authors

INTRODUCTION

The D-IV Applied Maritime Transportation study program at Politeknik Pelayaran Sumatera Barat is designed to produce graduates who are technically competent and job-ready for the shipping and logistics sectors (Baum-Talmor & Kitada, 2022). The program's curriculum blends theoretical knowledge with field practice, including port operations, cargo management, and maritime safety (Dewan & Godina, 2024; Pruy, 2024). Instruction emphasizes professional competencies aligned with industry needs, mastery of operational procedures, and understanding of national and international regulations (Shi et al., 2024). Students are equipped with technical skills, analytical capabilities, and the professional attitudes necessary to manage maritime transport activities (Li & Yuen, 2024; Belabyad et al., 2025). Partnerships with industry stakeholders and internship placements are integral components that strengthen students' applied experience (Weishaupt, 2025; Phanphichit & Bartusevičienė, 2024; Rico et al., 2025). Accordingly, the program aims to

prepare graduates to meet the operational and administrative challenges of modern shipping.

The Maritime Insurance course covers the principles of cargo insurance, policy clauses, claims mechanisms, and risk management in maritime operations (Abravitova et al., 2022). Course content includes the understanding of insurance contracts, policy exclusions, the principle of indemnity, and procedures for handling cargo and hull claims (Ching & Yip, 2022). Mastery of these topics is important because insurance functions as the primary financial risk-mitigation instrument within the maritime supply chain (Jiang et al., 2023). For students in the maritime transport program, insurance knowledge supports operational decision-making, preparation of cargo documentation, and coordination of claims among parties. Beyond technical aspects, the course requires analytical skills for risk assessment and the selection of appropriate coverage options (Nsikan et al., 2023). Therefore, Maritime Insurance constitutes a key component in shaping professional competencies for maritime students, especially within the transport program.

A deep understanding of Maritime Insurance content is a prerequisite for students to apply concepts in real-world settings (Dewan et al., 2024). The degree of understanding influences students' ability to prepare claim documentation, respond to incidents, and communicate effectively with underwriters or brokers (Rawat et al., 2021). Deficits in understanding can lead to poor decisions, potential financial losses, or ineffective claims handling (du Plessis et al., 2024). Conversely, strong comprehension enhances the quality of operational services and reduces the risk of inter-party disputes related to cargo (Wróbel, 2021). From an educational perspective, comprehension also reflects mastery of competencies expected by the program's learning standards (Harris & Clayton, 2020). Consequently, assessing and improving students' understanding is a strategic objective in vocational education for maritime transport.

Students' engagement in the learning process encompasses behavioral, emotional, and cognitive dimensions that collectively determine the quality of learning interactions (Alam & Mohanty, 2024). Behavioral engagement includes attendance, participation in discussions, and involvement in practical tasks; emotional engagement relates to interest and motivation; while cognitive engagement involves deep thinking and reflection (Xu et al., 2023; Lo et al., 2024). High levels of engagement foster active learning activities such as case analysis, claims simulations, and examination of relevant policy documents. These activities enrich learning experiences and thereby strengthen conceptual understanding and applied ability (Singh et al., 2022; Weich et al., 2024). Thus, increasing engagement is regarded as a principal strategy to improve learning outcomes in technically oriented courses like Maritime Insurance (Zhao et al., 2024; Medel et al., 2025). Pedagogical approaches that facilitate active in-class participation are expected to enhance knowledge uptake and transfer (Al Shloul et al., 2024).

Multiple studies in higher education report positive associations between students' engagement and academic outcomes, including improvements in grades and critical thinking (Bruijn-Smolders & Prinsen, 2024; Deng et al., 2025). Meta-analyses and empirical investigations indicate that interventions promoting engagement generally produce significant differences in learning achievement (Yan et al., 2022; Cipriano et al., 2024). Research in vocational and professional education also emphasizes engagement's role in strengthening practical skills and employability (Niittylahti et al., 2023; Weijzen et al., 2024). Furthermore, validated engagement measurement instruments exist and may be adapted to course-specific contexts. However, much of the evidence derives from cross-disciplinary studies, so direct application to technical courses requires empirical validation (Korhonen et al., 2024; Siddiqui et al., 2024; Laranjeira & Teixeira, 2025). Therefore, studies focusing specifically on engagement and comprehension in Maritime Insurance are both relevant and necessary.

Although considerable general evidence links engagement to learning outcomes, research specifically examining the effect of engagement on comprehension in Maritime Insurance remains limited, particularly within the context of Politeknik Pelayaran Sumatera Barat (Johansen, 2023). This lack of contextualized studies leaves pedagogical recommendations insufficiently tailored to the needs of maritime vocational programs (Kosman et al., 2024). Research that employs standardized survey instruments and comparative analyses would provide actionable, context-specific empirical evidence (O'Neill et al., 2023; Costa et al., 2024). In addition, effect-size estimates such as Cohen's d can offer practical information on the magnitude of engagement's impact on comprehension (Görlich & Friederichs, 2021; Yan et al., 2023). Hence, this study is urgent and timely to inform the design of more effective, industry-relevant instructional strategies.

The research questions of this study are: (1) Does students' engagement influence comprehension in the Maritime Insurance course? (2) To what extent does students' engagement affect levels of comprehension in the Maritime Insurance course? Based on these questions, the general objective of this study is to examine the influence of students' engagement on comprehension in Maritime Insurance. The specific objectives include measuring the magnitude of engagement's effect on students' comprehension levels in the course.

LITERATURE REVIEW & HYPOTHESIS DEVELOPMENT

Learning Comprehension

Learning comprehension refers to students' ability to internalize, organize, and interpret information so as to produce a coherent knowledge structure (Y. Li & Yan, 2024). Cognitively, comprehension involves processes such as concept recognition, establishing relationships among concepts, making inferences, and deriving meaning from context (Ruffini et al., 2023). Within Bloom's taxonomy, comprehension extends beyond mere recall to include application, analysis, synthesis, and evaluation of knowledge. Indicators of strong comprehension include the ability to paraphrase content in one's own words, solve contextualized problems, and transfer concepts to novel situations (Widiana et al., 2023). Comprehension is also determined by depth of processing: the more active and reflective the learning processes, the stronger the resulting understanding (Ogunyemi et al., 2022). From a measurement perspective, comprehension can be assessed via cognitive tests, applied tasks, case studies, and performance observation (Latini et al., 2021). In vocational education contexts such as the Maritime Insurance course, learning comprehension is meaningful when students can apply theoretical principles to operational practice and make appropriate decisions related to maritime insurance (Baartman & Quinlan, 2024).

Students' Engagement

Students' engagement refers to the degree of participation, emotional commitment, and cognitive involvement students exhibit in the learning process (Bergdahl, 2022). The principal components commonly distinguished are behavioral engagement (activity, attendance, task completion), emotional engagement (interest, affect, identification with the material), and cognitive engagement (processing strategies, self-regulation, reflection) (Chiu, 2021). In addition, the agentic dimension emphasizes the proactive role students take in shaping their learning experiences (Assefa et al., 2025). High levels of engagement are typically associated with more frequent interactions, meaningful participation in discussions, and receptivity to constructive feedback (Chiu, 2022). Functionally, engagement acts as a mediator between instructional strategies and learning outcomes because it facilitates deeper information processing. Engagement is commonly measured

using multi-scale questionnaires, classroom observation, and digital behavioral indicators such as LMS activity logs (Armas-Cervantes et al., 2024). In the context of Maritime Insurance, students' engagement is pivotal because it affects their ability to comprehend real cases, practice claims simulations, and develop professional readiness for the maritime sector (Held & Mejeh, 2024). Therefore, this study expects students' engagement to have a positive and significant effect on learning comprehension in the Maritime Insurance course.

Research hypothesis: Students' engagement has a significant effect on learning comprehension in the Maritime Insurance course.

METHOD

This study employed a quantitative design using an independent-samples t-test. The t-test was chosen to examine the hypothesis of a significant difference between two groups of data (Abduh et al., 2022). The research framework is presented in Figure 1.

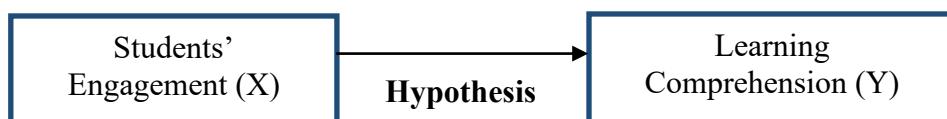


Figure 1. Research Framework

The study was conducted at Politeknik Pelayaran Sumatera Barat. The population comprised 153 students enrolled in the Sea Transportation Study Program in the 2025/2026 academic year. The sample was selected by random sampling using a quota/percentage technique (Mengistu et al., 2023). The sampling breakdown is shown in Table 1.

Table 1. Sampling Procedure

No.	Sea Transportation Study Program	No. of Students	Pilot Sample (33%)	Main Sample (67%)
1	Batch VII	45	15	30
2	Batch IX	108	35	73
	Total	153	50	103

Source: Study Program Data of 2025/2026 Academic Year

Table 1 above indicates the approach used to select both the pilot sample for instrument testing and the main study sample. This quota/percentage procedure ensured balanced representation from both cohorts. Accordingly, 50 students comprised the pilot sample for instrument testing and 103 students comprised the main study sample. The study instrument was a questionnaire; the pilot questionnaire items are presented in Table 2.

Table 2. Trial Questionnaire

Variable	Dimensions	Indicator	Code
Students' Engagement (Xu et al., 2023; Lo et al., 2024)	Behavioral	Attend lectures, practical sessions, and scheduled activities regularly and on time	SE1
		Actively participate in class discussions, group work, and in-class tasks	SE2
		Complete assigned readings, exercises, and coursework before the stated deadlines	SE3

		Emotional	Feel interested in and enthusiastic about the topics covered in this course. Feel a sense of belonging and positive connection with my classmates and instructors	SE4 SE5
		Cognitive	Emotionally motivated to succeed in this course Use deep-learning strategies to understand course material	SE6 SE7
			Regularly reflect on my learning progress and adjust my study strategies accordingly	SE8
			Try to connect new course content to prior knowledge or real-world/occupational situations	SE9
Learning Comprehension (Swiecki et al., 2022; Daly et al., 2024; Wong et al., 2024)	Concept Mastery		Can accurately explain the core concepts and principles of the course in my own words Can identify and distinguish between related theoretical constructs and their boundaries Can reconstruct the logical sequence of arguments or procedures presented in the course material	LC1 LC2 LC3
	Case Application		Can apply theoretical concepts to analyze real-world case scenarios relevant to the course Can generate appropriate solutions or recommendations for case problems by using course knowledge	LC4 LC5
	Work Readiness		Can justify my case-based decisions by linking them to specific theories or empirical evidence Can translate course learning into practical tasks that mirror workplace responsibilities Feel confident performing job-relevant procedures and decision-making that the course addresses	LC6 LC7 LC8
			Can critically evaluate professional situations and select actions that reflect industry standards	LC9

Source: Trial Questionnaire

All questionnaire items were rated on a five-point Likert scale: 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, and 5 = strongly agree. To compare the mean scores of the study variables students' engagement (X) and learning comprehension (Y), an independent-samples t-test was conducted, followed by calculation of Cohen's d for effect size. In addition to the t-test, a series of supporting analyses were performed, including validity and reliability testing of the instrument and an assessment of data normality prior to the t-test (Nazarwin et al., 2025). All statistical analyses were carried out using IBM SPSS Statistics version 25.

RESULT AND DISCUSSION

The results of the instrument validity and reliability tests are presented in Table 3.

Table 3. Validity Test of Research Variable

Variable	No.	Code	r-calculated	Result
<i>r-critical = 0.2353</i>				
Students' Engagement	1	SE1	0.699	Valid - usable
	2	SE2	0.651	Valid - usable

Variable	No.	Code	r-calculated	Result
Learning Comprehension (Y)	3	SE3	0.736	Valid - usable
	4	SE4	0.770	Valid - usable
	5	SE5	0.715	Valid - usable
	6	SE6	0.266	Valid - usable
	7	SE7	0.244	Valid - usable
	8	SE8	0.815	Valid - usable
	9	SE9	0.742	Valid - usable
	10	LC1	0.746	Valid - usable
	11	LC2	0.668	Valid - usable
	12	LC3	0.664	Valid - usable
	13	LC4	0.586	Valid - usable
	14	LC5	0.686	Valid - usable
	15	LC6	0.127	Invalid - Unusable
	16	LC7	0.048	Invalid - Unusable
	17	LC8	0.704	Valid - usable
	18	LC9	0.534	Valid - usable

Source: SPSS Analysis

The reliability results for the pilot sample, using Cronbach's alpha, are reported in Table 4.

Table 4. Reliability Test of Instrument

No.	Variable	R-value	R-table	Result
1	Students' Engagement (X)	0.850	0.60	Reliable
2	Learning Comprehension (Y)	0.797	0.60	Reliable

Source: Research Result from SPSS

Based on the validity and reliability findings above, it was concluded that the questionnaire (16 valid items) could be administered to the main study sample ($n = 103$). Prior to hypothesis testing (t-test), a data normality test is conducted, due to a prerequisite for the independent-samples t-test. The normality test results are presented in Table 5.

Table 5. Data Normality Test Results

No.	Variable	Criterion	Shapiro-Wilk Sig.	Result
1	Students' Engagement (X)	> 0.05	0.82	Normal
2	Learning Comprehension (Y)	> 0.05	0.76	Normal

Source: Research Result from SPSS

Then, the descriptive statistic result from each indicator can be seen below:

Table 6. Descriptive Statistic from Each Indicator

Variable	Mean	Median	Variance	Std. Deviation	Min.	Max.	Range
Students' Engagement (X)	31.32	31.00	7.632	2.763	24	38	14
Learning Comprehension (Y)	22.56	23.00	5.445	2.333	17	29	12

Source: Research Result from SPSS

Hypothesis testing was then conducted using independent-samples t-tests, because both variables were normally distributed. The hypothesis testing is conducted by

comparing the p-values from the independent-samples t-tests in SPSS against the study's significance level ($\alpha = 0.05$) (Kurniawan et al., 2025). If the p-value is less than 0.05, the alternative hypothesis (H_a) is accepted and the null hypothesis (H_0) is rejected; if the p-value exceeds 0.05, H_0 is retained and H_a is rejected. In addition, the absolute value of the calculated t-statistic ($|t\text{-calculated}|$) was compared to the critical t-value ($t\text{-critical}$): if $|t\text{-calculated}| > t\text{-critical}$, H_1 is accepted; if $|t\text{-calculated}| < t\text{-critical}$, H_0 is accepted. The result of hypothesis testing is presented in Table 7.

Table 7. Results of Hypotheses Testing

No.	Hypothesis Test	t-critical	t-calculated	Sig. Criterion	Sig. value	Result
1	X towards Y	1.66	24.578	< 0.05	0.000	Accepted Hypothesis

Source: Research Result (2025)

From the results shown in Table 7, the study hypothesis is accepted; that is, students' engagement has a significant effect on learning comprehension in the Maritime Insurance course. To quantify the magnitude of this effect, Cohen's d was computed using the following data (Nordahl-Hansen et al., 2024):

Table 8. Cohen's d Calculation Data

	Group 1	Group 2
Mean (M)	31.32	22.56
Standard Deviation (S)	2.763	2.333
Sample Size (n)	103	103
Cohen's d	$(22.56-31.32)/2.557055 = 3.425816$	

Cohen's d category is as below (Tagliaferri et al., 2024):

Table 9. Cohen's d Category

Effect Size	Interpretation
ES < 0.20	Weak
0.21 – 0.5	Moderate
0.51 – 1.00	Strong
> 1.01	Very Strong

From Table 8, it can be concluded that the effect of students' engagement on learning comprehension in the Maritime Insurance course is 3.42, which corresponds to a very strong effect.

Practically, these findings indicate that increasing students' engagement can contribute substantially to concept mastery and applied competence within the maritime context (Aliabadi & Weisi, 2023; Starup et al., 2024; Korhonen et al., 2024). Higher engagement strengthens comprehension because more intensive activities promote deeper processing, such as elaboration, organization, and retrieval that link new information to existing cognitive schemas (Broeren et al., 2021; Thompson & Hughes, 2023). High engagement also increases time-on-task and affords more opportunities for distributed practice, so that concepts are not merely memorized but can be applied across varied cases (Wu et al., 2024). Emotional commitment (interest and belonging) enhances motivation and persistence when confronting complex problems in maritime insurance, enabling students to better withstand initial failure and learn more effectively from feedback (Niki, 2024). Behavioral and agentic aspects, such as active participation, question-asking, and initiative in simulations facilitate collaborative learning and

perspective exchange that are important for solving operational cases (Siry et al., 2024). Therefore, students are advised to adopt active learning strategies (pre-reading, summarizing, periodic reflection), actively participate in discussions and claims simulations, and use LMS analytics to monitor learning progress (Shwartz-Asher et al., 2022). Instructors should design authentic, industry-scaled tasks, provide targeted scaffolding and formative feedback, and integrate case studies and industry partnerships to enrich applied contexts (Ajjawi et al., 2024; Khan et al., 2025). With synergy between students' proactive behaviors and instructor-supported learning design, together with continuous monitoring and instructional adjustment, the positive impact of engagement on conceptual mastery and job readiness will be better assured.

Theoretically and pedagogically, these findings enrich the vocational education literature by reaffirming the central role of engagement in transferring knowledge into work-relevant skills for the Maritime Insurance course (Ramsarup et al., 2023). The results support the implementation of active learning strategies, for example, claims case studies, insurance process simulations, and industry-based collaborative projects to enhance behavioral, emotional, and cognitive aspects of students' engagement (Thomann et al., 2024). Educators and curricula should prioritize activities that promote authentic participation, affective attachment, and deep processing of material to maximize gains in comprehension (Christopoulos & Stylios, 2024). Moreover, ongoing authentic assessment and formative feedback will strengthen the relationship between engagement and positive learning outcomes (Pahi et al., 2024). Collaboration with maritime industry stakeholders is likewise recommended to enrich application contexts and improve students' workplace readiness (Relly & Laczik, 2022). Practical implementations proposed include integrating claims simulations, problem-based learning, and routine measurement of engagement as part of course evaluation.

CONCLUSION

The independent-samples t-test results indicate that the research hypothesis is accepted (t -calculated = 24.578, $p < 0.05$), demonstrating that students' engagement significantly affects learning comprehension in the Maritime Insurance course. The computed effect size, Cohen's d = 3.42, according to the categorization used, indicates a very large effect. This magnitude suggests that the mean difference between groups with differing engagement levels is not only statistically significant but also practically substantial. Several limitations should be noted when interpreting these findings, including the non-experimental design and the potential reliance on self-report instruments that are vulnerable to social desirability bias. The unusually large effect size also warrants further scrutiny for possible confounding variables or measurement artifacts that were not controlled. Consequently, future research is recommended to employ longitudinal or experimental designs controlling for baseline ability, motivation, and exposure to industry practice. Subsequent studies should incorporate objective outcomes and digital behavioral indicators (e.g., LMS logs) to validate self-report-based results. Additionally, exploring mediation or moderation mechanisms, for example, the role of self-regulation or feedback quality would help clarify how and when engagement influences comprehension. Such approaches will enhance the reliability and generalizability of findings and render pedagogical recommendations for Maritime Insurance education more robust and trustworthy.

ACKNOWLEDGEMENT

The author gratefully thanks to Politeknik Pelayaran Sumatera Barat for serving as the research site and for providing access to the students sample. Their cooperation and logistical support were essential to the successful completion of this study.

REFERENCES

Abduh, M., Hasnur, J., & Siska, S. Y. (2022). The effect of maritime English vocabulary for beginners module on the vocabulary learning outcomes. *Jurnal Pendidikan Vokasi*, 12(2), 117-129. <https://doi.org/10.21831/jpv.v12i2.49033>

Abravitova, Y. A., Khairusov, D. S., & Lipsky, N. A. (2022). Problems of Application of Certain Concepts in the Field of Maritime Transportation. *Transportation Research Procedia*, 68, 347-356. <https://doi.org/10.1016/j.trpro.2023.02.047>

Ajjawi, R., Tai, J., Dollinger, M., Dawson, P., Boud, D., & Bearman, M. (2024). From authentic assessment to authenticity in assessment: broadening perspectives. *Assessment and Evaluation in Higher Education*, 49(4), 499-510. <https://doi.org/10.1080/02602938.2023.2271193>

Al Shloul, T., Mazhar, T., Abbas, Q., Iqbal, M., Ghadi, Y. Y., Shahzad, T., Mallek, F., & Hamam, H. (2024). Role of activity-based learning and ChatGPT on students' performance in education. *Computers and Education: Artificial Intelligence*, 6(April), 100219. <https://doi.org/10.1016/j.caeari.2024.100219>

Alam, A., & Mohanty, A. (2024). Framework of Self-Regulated Cognitive Engagement (FSRCE) for sustainable pedagogy: a model that integrates SRL and cognitive engagement for holistic development of students. *Cogent Education*, 11(1). <https://doi.org/10.1080/2331186X.2024.2363157>

Aliabadi, R. B., & Weisi, H. (2023). Teachers' strategies to promote learners' engagement: Teachers' talk in perspective. *International Journal of Educational Research Open*, 5(June). <https://doi.org/10.1016/j.ijedro.2023.100262>

Armas-Cervantes, A., Abedin, E., & Taymouri, F. (2024). Dusting for fingerprints: Tracking online students' engagement. *Computers and Education: Artificial Intelligence*, 6(December 2023), 100232. <https://doi.org/10.1016/j.caeari.2024.100232>

Assefa, Y., Tilwani, S. A., Moges, B. T., & Majeed, H. (2025). Unpacking students' engagement and its mediating role in predicting the relationship between self-determination and academic satisfaction among undergraduate students in higher education. *Social Sciences and Humanities Open*, 12(July), 101797. <https://doi.org/10.1016/j.ssho.2025.101797>

Baartman, L. K. J., & Quinlan, K. M. (2024). Assessment and feedback in higher education reimagined: using programmatic assessment to transform higher education. *Perspectives: Policy and Practice in Higher Education*, 28(2), 57-67. <https://doi.org/10.1080/13603108.2023.2283118>

Baum-Talmor, P., & Kitada, M. (2022). Industry 4.0 in shipping: Implications to seafarers' skills and training. *Transportation Research Interdisciplinary Perspectives*, 13(May 2021), 100542. <https://doi.org/10.1016/j.trip.2022.100542>

Belabyad, M., Kontovas, C., Pyne, R., & Chang, C. H. (2025). Skills and competencies for operating maritime autonomous surface ships (MASS): a systematic review and bibliometric analysis. *Maritime Policy and Management*, 00(00), 1-26. <https://doi.org/10.1080/03088839.2025.2475177>

Bergdahl, N. (2022). Engagement and disengagement in online learning. *Computers and Education*, 188(March), 104561. <https://doi.org/10.1016/j.compedu.2022.104561>

Broeren, M., Heijltjes, A., Verkoeijen, P., Smeets, G., & Arends, L. (2021). Supporting the self-regulated use of retrieval practice: A higher education classroom experiment. *Contemporary Educational Psychology*, 64, 101939. <https://doi.org/10.1016/j.cedpsych.2020.101939>

Ching, R. H. F., & Yip, T. L. (2022). Marine insurance claims analysis using the Weibull and log-normal models: Compensation for oil spill pollution due to tanker accidents. *Maritime Transport Research*, 3(March), 100056. <https://doi.org/10.1016/j.martra.2022.100056>

Chiu, T. K. F. (2021). Digital support for students' engagement in blended learning based

on self-determination theory. *Computers in Human Behavior*, 124(June), 106909. <https://doi.org/10.1016/j.chb.2021.106909>

Chiu, T. K. F. (2022). Applying the self-determination theory (SDT) to explain students' engagement in online learning during the COVID-19 pandemic. *Journal of Research on Technology in Education*, 54(S1), S14–S30. <https://doi.org/10.1080/15391523.2021.1891998>

Christopoulos, A., & Stylios, C. (2024). Virtual Reality in Maritime Training: A Mini Literature Review and Open Issues. *IFAC-PapersOnLine*, 58(3), 203–208. <https://doi.org/10.1016/j.ifacol.2024.07.151>

Cipriano, C., Ha, C., Wood, M., Sehgal, K., Ahmad, E., & McCarthy, M. F. (2024). A systematic review and meta-analysis of the effects of universal school-based SEL programs in the United States: Considerations for marginalized students. *Social and Emotional Learning: Research, Practice, and Policy*, 3(January), 100029. <https://doi.org/10.1016/j.sel.2024.100029>

Costa, A., Rodrigues, F., Pitarma, R., & Ferreira, M. E. (2024). Design and validation of an instrument to evaluate the workgroup methodology in university students. *International Journal of Educational Research Open*, 7(June 2023). <https://doi.org/10.1016/j.ijedro.2024.100351>

Daly, R., Spooner, M., Offiah, G., Flood, K., & Illing, J. (2024). Protocol for a realist review of case-based learning in undergraduate medical education. *International Journal of Educational Research Open*, 7(June), 100366. <https://doi.org/10.1016/j.ijedro.2024.100366>

De Brujin-Smolders, M., & Prinsen, F. R. (2024). Effective students' engagement with blended learning: A systematic review. *Heliyon*, 10(23), e39439. <https://doi.org/10.1016/j.heliyon.2024.e39439>

Deng, R., Jiang, M., Yu, X., Lu, Y., & Liu, S. (2025). Does ChatGPT enhance student learning? A systematic review and meta-analysis of experimental studies. *Computers and Education*, 227(August 2024). <https://doi.org/10.1016/j.compedu.2024.105224>

Dewan, M. H., & Godina, R. (2024). An overview of seafarers' engagement and training on energy efficient operation of ships. *Marine Policy*, 160(December 2023), 105980. <https://doi.org/10.1016/j.marpol.2023.105980>

du Plessis, F., Goedhals-Gerber, L., & van Eeden, J. (2024). Climate change and marine cargo insurance - A global survey of insurers' perceptions. *Heliyon*, 10(17), e37117. <https://doi.org/10.1016/j.heliyon.2024.e37117>

Görlich, D., & Friederichs, H. (2021). Using longitudinal progress test data to determine the effect size of learning in undergraduate medical education-a retrospective, single-center, mixed model analysis of progress testing results. *Medical Education Online*, 26(1). <https://doi.org/10.1080/10872981.2021.1972505>

Hanif Dewan, M., Ahmed Mustafi, M. A., Matos, F., & Godina, R. (2024). Exploring seafarers' knowledge, understanding, and proficiency in SEEMP: A strategic training framework for enhancing seafarers' competence in energy-efficient ship operations. *Heliyon*, 10(17), e36505. <https://doi.org/10.1016/j.heliyon.2024.e36505>

Harris, R., & Clayton, B. (2020). The value of vocational education and training. *International Journal of Training Research*, 18(3), 185–190. <https://doi.org/10.1080/14480220.2020.1860309>

Held, T., & Mejeh, M. (2024). Students' motivational trajectories in vocational education: Effects of a self-regulated learning environment. *Heliyon*, 10(8), e29526. <https://doi.org/10.1016/j.heliyon.2024.e29526>

James Relly, S., & Laczik, A. (2022). Apprenticeship, employer engagement and vocational formation: a process of collaboration. *Journal of Education and Work*, 35(1), 1–15. <https://doi.org/10.1080/13639080.2021.1983524>

Jiang, M., Liu, Y., Lu, J., Qu, Z., & Yang, Z. (2023). Risk assessment of maritime supply chains

within the context of the Maritime Silk Road. *Ocean and Coastal Management*, 231(September 2022), 106380. <https://doi.org/10.1016/j.ocecoaman.2022.106380>

Johansen, K. (2023). Challenges regarding digital distance learning of operationally-oriented professions, due to Covid-19 pandemic. *International Journal of Educational Research Open*, 4(September 2022), 100225. <https://doi.org/10.1016/j.ijedro.2023.100225>

Khan, I. M., Edwards, E., Ianicelli, B. M., Ahmed, W., Hardey, M., & Eremionkhale, G. (2025). University-industry collaboration for academic success and employability: a connectivist perspective. *Studies in Higher Education*, 5079, 1-21. <https://doi.org/10.1080/03075079.2025.2545606>

Korhonen, V., Ketonen, E., & Toom, A. (2024). Students' engagement and its development in university education: A three-year follow-up study. *Learning and Individual Differences*, 113(May), 102465. <https://doi.org/10.1016/j.lindif.2024.102465>

Kosman, B. A., de Jong, D. C., Knight-Agarwal, C. R., Chipchase, L. S., & Etxebarria, N. (2024). Development and validation of an assessment tool for higher education learning abroad programs: A qualitative Delphi study. *Nurse Education Today*, 132(November 2023), 106030. <https://doi.org/10.1016/j.nedt.2023.106030>

Kurniawan, M., Hasnur, J., & Siska, S. Y. (2025). Character Building in University Students: Comprehension of Islamic Value & Discipline. *Edureligia : Jurnal Pendidikan Agama Islam*, 09(01), 48-67.

Laranjeira, M., & Teixeira, M. O. (2025). Relationships between engagement, achievement and well-being: validation of the engagement in higher education scale. *Studies in Higher Education*, 50(4), 756-770. <https://doi.org/10.1080/03075079.2024.2354903>

Latini, N., Bråten, I., & Haverkamp, Y. E. (2021). Breadth and depth of strategic processing during text comprehension. *Learning and Individual Differences*, 91, 102058. <https://doi.org/10.1016/j.lindif.2021.102058>

Li, X., & Yuen, K. F. (2024). A human-centred review on maritime autonomous surfaces ships: impacts, responses, and future directions. *Transport Reviews*, 44(4), 791-810. <https://doi.org/10.1080/01441647.2024.2325453>

Li, Y., & Yan, L. (2024). Which reading comprehension is better? A meta-analysis of the effect of paper versus digital reading in recent 20 years. *Telematics and Informatics Reports*, 14(19), 100142. <https://doi.org/10.1016/j.teler.2024.100142>

Lo, C. K., Hew, K. F., & Jong, M. S. yung. (2024). The influence of ChatGPT on students' engagement: A systematic review and future research agenda. *Computers and Education*, 219(January), 105100. <https://doi.org/10.1016/j.compedu.2024.105100>

Medel, D., Bonet, A., Jimenez Herrera, M., Sevilla, F., Vilaplana, J., Cemeli, T., & Roca, J. (2025). Interactive Virtual Simulation Case: A Learning Environment for the Development of Decision-Making in Nursing Students. *Teaching and Learning in Nursing*, 20(1), e60-e68. <https://doi.org/10.1016/j.teln.2024.08.002>

Mengistu, M. A., Worku, M. Y., & Melesse, T. (2023). Perceptions and practice of primary school English teachers in lesson study to improve their classroom practices. *Cogent Education*, 10(1). <https://doi.org/10.1080/2331186X.2023.2196906>

Nazarwin, Putra, R. W., Hermanto, B., & Siska, S. Y. (2025). Strategies for Enhancing Job Satisfaction: The Influence of Rewards, Work-Life Balance & Coworker Support. *International Journal of Management, Entrepreneurship, Social Science and Humanities And*, 9(1), 104-123.

Niittylahti, S., Annala, J., & Mäkinen, M. (2023). Students' engagement profiles in vocational education and training: a longitudinal study. *Journal of Vocational Education and Training*, 75(2), 372-390. <https://doi.org/10.1080/13636820.2021.1879902>

Niki, M. (2024). Does the reduction in instruction time affect student achievement and motivation? Evidence from Japan. *Japan and the World Economy*, 70(April), 101254.

https://doi.org/10.1016/j.japwor.2024.101254

Nordahl-Hansen, A., Cogo-Moreira, H., Panjeh, S., & Quintana, D. S. (2024). Redefining effect size interpretations for psychotherapy RCTs in depression. *Journal of Psychiatric Research*, 169(November 2023), 38-41. <https://doi.org/10.1016/j.jpsychires.2023.11.009>

Nsikan, J., Micheal, R., Mercy, O., Adebukola, A., Briggs, I., & Inegbedion, D. (2023). Robust practices for managing maritime supply chain risks: A survey of Nigeria's seaports. *Asian Journal of Shipping and Logistics*, 39(4), 1-7. <https://doi.org/10.1016/j.ajsl.2023.09.001>

O'Neill, L., Lauridsen, H. H., Østengaard, L., & Qvortrup, A. (2023). Validity evidence for the Experiences of Teaching and Learning Questionnaire (ETLQ) in evaluations of quality learning: A systematic critical literature review. *Studies in Educational Evaluation*, 78(June). <https://doi.org/10.1016/j.stueduc.2023.101283>

Ogunyemi, A. A., Quaicoe, J. S., & Bauters, M. (2022). Indicators for enhancing learners' engagement in massive open online courses: A systematic review. *Computers and Education Open*, 3, 100088. <https://doi.org/10.1016/j.caeo.2022.100088>

Pahi, K., Hawlader, S., Hicks, E., Zaman, A., & Phan, V. (2024). Enhancing active learning through collaboration between human teachers and generative AI. *Computers and Education Open*, 6(April), 100183. <https://doi.org/10.1016/j.caeo.2024.100183>

Phanphichit, T., & Bartusevičienė, I. (2024). Perspectives of stakeholders on onboard training: A thematic analysis of qualitative interviews. *Journal of International Maritime Safety, Environmental Affairs, and Shipping*, 8(4). <https://doi.org/10.1080/25725084.2024.2408698>

Pruyn, J. (2024). The use of digital games in academic maritime education: a theoretical framework and practical applications. *Maritime Policy and Management*, 51(4), 558-571. <https://doi.org/10.1080/03088839.2023.2174608>

Ramsarup, P., McGrath, S., & Lotz-Sisitka, H. (2023). Reframing skills ecosystems for sustainable and just futures. *International Journal of Educational Development*, 101(June), 102836. <https://doi.org/10.1016/j.ijedudev.2023.102836>

Rawat, S., Rawat, A., Kumar, D., & Sabitha, A. S. (2021). Application of machine learning and data visualization techniques for decision support in the insurance sector. *International Journal of Information Management Data Insights*, 1(2). <https://doi.org/10.1016/j.jjimei.2021.100012>

Rico, F., Rico, H., de La Puente, M., Torres, J., & Guzman, H. (2025). Enhancing international trade competencies through local field trips: a study of Colombian undergraduate students. *Cogent Education*, 12(1). <https://doi.org/10.1080/2331186X.2025.2547940>

Ruffini, C., Tarchi, C., & Pecini, C. (2023). Which executive functions affect text comprehension and writing in paper and digital mode? An investigation in primary school children. *Computers and Education*, 207(September), 104936. <https://doi.org/10.1016/j.compedu.2023.104936>

Shi, K., Fan, S., Weng, J., & Yang, Z. (2024). Seafarer competency analysis: Data-driven model in restricted waters using Bayesian networks. *Ocean Engineering*, 311(P2), 119001. <https://doi.org/10.1016/j.oceaneng.2024.119001>

Shwartz-Asher, D., Raviv, A., & Herscu-Kluska, R. (2022). Teaching and assessing active learning in online academic courses. *Social Sciences and Humanities Open*, 6(1), 100341. <https://doi.org/10.1016/j.ssho.2022.100341>

Siddiqui, N., Nahar, N., Hossain, M. S., Tazmeen, A., & Ali, K. S. (2024). Context-specific adaptation of a students' engagement measure: a case study of a private university in Bangladesh. *Cogent Education*, 11(1). <https://doi.org/10.1080/2331186X.2024.2380638>

Singh, M., James, P. S., Paul, H., & Bolar, K. (2022). Impact of cognitive-behavioral

motivation on students' engagement. *Helijon*, 8(7), e09843. <https://doi.org/10.1016/j.heliyon.2022.e09843>

Siry, C., Wilmes, S. E. D., & Frisch, R. (2024). Agentic student science engagement: Highlighting open-ended pedagogical structures in a plurilingual classroom. *International Journal of Educational Research*, 127(February 2023), 102357. <https://doi.org/10.1016/j.ijer.2024.102357>

Starup, M., Sellberg, C., & Wiig, A. C. (2024). Playing to learn? Analyzing participants' framing of competition and professional conduct in maritime simulations. *Learning, Culture and Social Interaction*, 46(April), 100821. <https://doi.org/10.1016/j.lcsi.2024.100821>

Swiecki, Z., Khosravi, H., Chen, G., Martinez-Maldonado, R., Lodge, J. M., Milligan, S., Selwyn, N., & Gašević, D. (2022). Assessment in the age of artificial intelligence. *Computers and Education: Artificial Intelligence*, 3(August 2021). <https://doi.org/10.1016/j.caai.2022.100075>

Tagliaferri, S. D., Belavy, D. L., Fitzgibbon, B. M., Bowe, S. J., Miller, C. T., Ehrenbrusthoff, K., & Owen, P. J. (2024). How to Interpret Effect Sizes for Biopsychosocial Outcomes and Implications for Current Research. *Journal of Pain*, 25(4), 857-861. <https://doi.org/10.1016/j.jpain.2023.10.014>

Thomann, H., Zimmermann, J., & Deutscher, V. (2024). How effective is immersive VR for vocational education? Analyzing knowledge gains and motivational effects. *Computers and Education*, 220(March), 105127. <https://doi.org/10.1016/j.compedu.2024.105127>

Thompson, C. P., & Hughes, M. A. (2023). The Effectiveness of Spaced Learning, Interleaving, and Retrieval Practice in Radiology Education: A Systematic Review. *Journal of the American College of Radiology*, 20(11), 1092-1101. <https://doi.org/10.1016/j.jacr.2023.08.028>

Weich, M., Göllner, R., & Stalder, B. E. (2024). Subject and time specificity of students' cognitive, behavioral, and emotional engagement at school. *Learning and Individual Differences*, 114(September 2023). <https://doi.org/10.1016/j.lindif.2024.102511>

Weijzen, S. M. G., Onck, C., Wals, A. E., Tassone, V. C., & Kuijer-Siebelink, W. (2024). Vocational education for a sustainable future: Unveiling the collaborative learning narratives to make space for learning. *Journal of Vocational Education and Training*, 76(2), 331-353. <https://doi.org/10.1080/13636820.2023.2270468>

Weishaupt, T. (2025). Workforce development in low-carbon energy transitions: The case of horizontal governance in Schleswig-Holstein (Germany). *Environmental Innovation and Societal Transitions*, 57(August), 101040. <https://doi.org/10.1016/j.eist.2025.101040>

Widiana, I. W., Triyono, S., Sudirtha, I. G., Adijaya, M. A., & Wulandari, I. G. A. A. M. (2023). Bloom's revised taxonomy-oriented learning activity to improve reading interest and creative thinking skills. *Cogent Education*, 10(2). <https://doi.org/10.1080/2331186X.2023.2221482>

Wong, W. J., Lee, R. F. S., Chong, L. Y., Lee, S. W. H., & Lau, W. M. (2024). Work readiness of pharmacy graduates: An exploratory study. *Exploratory Research in Clinical and Social Pharmacy*, 13(August 2023), 100389. <https://doi.org/10.1016/j.rcsop.2023.100389>

Wróbel, K. (2021). Searching for the origins of the myth: 80% human error impact on maritime safety. *Reliability Engineering and System Safety*, 216(June 2020). <https://doi.org/10.1016/j.ress.2021.107942>

Wu, J. Y., Liao, C. H., Tsai, C. C., & Kwok, O. M. (2024). Using learning analytics with temporal modeling to uncover the interplay of before-class video viewing engagement, motivation, and performance in an active learning context. *Computers and Education*, 212(December 2023), 104975.

<https://doi.org/10.1016/j.compedu.2023.104975>

Xu, X., Shi, Z., Bos, N. A., & Wu, H. (2023). Students' engagement and learning outcomes: an empirical study applying a four-dimensional framework. *Medical Education Online*, 28(1). <https://doi.org/10.1080/10872981.2023.2268347>

Yan, Z., Lao, H., Panadero, E., Fernández-Castilla, B., Yang, L., & Yang, M. (2022). Effects of self-assessment and peer-assessment interventions on academic performance: A meta-analysis. *Educational Research Review*, 37(September 2022). <https://doi.org/10.1016/j.edurev.2022.100484>

Yan, Z., Wang, X., Boud, D., & Lao, H. (2023). The effect of self-assessment on academic performance and the role of explicitness: a meta-analysis. *Assessment and Evaluation in Higher Education*, 48(1), 1–15. <https://doi.org/10.1080/02602938.2021.2012644>

Zhao, L., Dai, X., & Chen, S. (2024). Effect of the case-based learning method combined with virtual reality simulation technology on midwifery laboratory courses: A quasi-experimental study. *International Journal of Nursing Sciences*, 11(1), 76–82. <https://doi.org/10.1016/j.ijnss.2023.12.009>