The Relationship Between Color Mixing Learning Activities and Fine Motor Skills In Early Childhood

*Heri Hidayat¹, Zaenal Muftie², Indrie Dwi Lestari³
¹,²,³ UIN Sunan Gunung Djati Bandung, Indonesia

herihidayat@uinsgd.ac.id

ARTICLE INFO
Article history:
Received October 01, 2023
Revised November 01, 2023
Accepted December 29, 2023

Abstract
In the activity of mixing colors and fine motor skills some children have high enthusiasm, and are skilled in using stationery. However, some children still have problems with their fine motor skills. Such as, the application of colors to objects that are not yet certain, children are still stiff when using their fingers, and children are still unable to coordinate between the eyes and hands with one activity they do because children are easily distracted by other activities. The purpose of this research is to find out: The reality of learning activities to mix colors in Group B2 RA Al-Muhajir Panyileukan Bandung City, the reality of fine motor skills of early childhood in Group B2 RA Al-Muhajir Panyileukan Bandung City, and the reality of the relationship between learning activities to mix colors with fine motor skills in children in Group B2 RA Al-Muhajir Panyileukan Bandung City. This research method uses a correlation method with a quantitative approach. The samples obtained in this study were 12 children from group B2 RA Al-Muhajir Bandung City. For data collection techniques used by researchers are observation, documentation, and performance techniques. The results of data analysis on the variable learning activity of mixing colors in this study show that the learning activity of mixing colors is in a very good category with a value of 85.70 and fine motor skills of early childhood are in a very good category with a value of 88.05 this figure is in the interval 80-100. There is a significant relationship between learning activities mixing colors with fine motor skills of early childhood in group B2 RA Al-Muhajir Bandung City, with a very strong/very high level of relationship at the price of the correlation coefficient of 0.85 which is included in the interval 0.80-1.000

Keywords: Color Mixing, Fine Motor Skills, Early Childhood

INTRODUCTION
Early childhood is a period of growth and development at 0-6 years old. Early childhood is often called the Golden Age, which means that aspects of child development in early childhood have high potential or develop optimally through stimuli provided by parents and educators (Sari, 2023). Early childhood also has individuals who are different from one another with other individual children, some individuals have characteristics or uniqueness in each child, where each child has a period of growth and development in the aspects of language, creativity, social-emotional, cognitive, and physical-motor (Widya et al., 2019). Children require an environment that provides stimulation suitable for their developmental stage. This stimulation can come from various sources, such as interaction...
with adults, learning-supportive toys, and an engaging learning environment open to exploration (Utama, Eka, Wati, & Yani, 2023). Through appropriate stimulation, children have the opportunity to develop their potential to the fullest (Budiarti, 2023). The environment plays a primary role as a catalyst in the process of children's growth and development (Suhono, Pratiwi, Ariyanto, & Lala, 2022). Home, school, and the surrounding environment greatly influence children's patterns of thinking, behavior, and skills (Kamaruddin et al., 2023). Therefore, it is important for these environments to provide optimal support for children's development.

Children have diverse potential in various aspects of life (Yulianto, Maryana, Rumfot, Ridhwan, & Jasiah, 2023). These potentials include cognitive aspects (thinking and understanding), emotional aspects (feelings and mental states), social aspects (interaction with others), and physical aspects (body activities and health). An environment that supports and provides appropriate stimulation helps children optimize these potentials (Wahyuni Abstrak, 2019). Children's development is not limited to academic or physical abilities alone. They also need to strengthen emotional abilities, such as managing emotions and understanding their own and others' feelings (Hasanah et al., 2021). Additionally, social skills, such as interacting with peers, are also important for their development (Percy-Smith, Thomas, O'Kane, & Imoh, 2023). A safe, supportive, and stimulating environment helps children develop these various skills in balance (Pahenra, Amalia, Usman, La Ndibo, & Ichwantiy sabir, 2023). Suitable and supportive environment is crucial for children's development. With appropriate stimulation, children can grow and develop into independent, resilient individuals capable of coping well with life's challenges (Junaedi & Digidowiseiso, 2023).

The National Association for the Education of Young Children explains that early childhood is a child between the ages of 0 and 8. At this age, the development and growth of children in various aspects dramatically influences human life (Ramli, 2022). Children learn to process multiple elements, and the stimulus for children's growth and development is close to the stimulation of parents and education that will nurture all forms and characteristics in each child (Dammeyer, Hansen, Crowe, & Marschark, 2019). Fine motor development relates to a child's ability to observe something and perform movements involving specific body parts only, with the help of small muscles (Nurhayati, 2020). It requires careful coordination of the eyes, hands and fingers. Fine motor skills are fine coordination of small muscles that play a significant role. Fine motor skills are a movement that requires control of small size muscles to achieve a specific goal that includes hand-eye coordination and movements that require hand or finger movements for high-accuracy work (Hanafiah et al., 2023).

Colour mixing is an art activity that unites one colour with another and produces a different colour, where the activity can be done using crayons and watercolours. It can develop fine motor skills from moving hands and finger muscles, coordinate muscles and eyes, develop imagination, and train skills in combining colors (Wahyuningsih, Wahyuni, & Siregar, 2023). The color mixing method is also a learning that can reduce boredom in children and provide a stimulus for interesting activities so that it can make children's learning more enthusiastic. Color mixing is combining primary colors (red, blue, and yellow) to get all the desired colors (Nurhayati, 2020).

Regarding the development of fine motor aspects of children in RA Al-Muhajir Bandung, it was found that every time the activity process took place, the children became very happy and excited in doing color mixing activities and high curiosity. However, on the other hand, the fine motor skills of some children still need to be visible from the stages of existing skill abilities. This can be seen from the way children are still not correct in grasping coloring tools such as crayons and brushes. Then, the application of color to the drawing object is still erratic, such as coloring but out of line from the picture, lack of coordination between fingers and arms, and focus that breaks from one activity to another.
By looking at some of the problems that have occurred, it can be said that the goal to be achieved is to find out whether there is a gap from the learning activity of mixing colors with the fine motor skills of early childhood in group B2 of RA Al-Muhajir Bandung City. In addition, the purpose of this research is following the indicators to be achieved referring to learning to mix colors to make children's creativity, children's cognition, and children's fine motor skills increase especially if done continuously and become habituation following the concept of Montessori learning (Fajriani, 2019). Also, Permendikbud Number 137 of 2014 concerning National Standards for Early Childhood Education Article 10 explains that fine motor includes the ability and flexibility to use hands, eyes, and fingers as well as tools to explore and express themselves in various forms.

METHOD

This research uses a quantitative approach. The research method used in this study is the simple correlation method. This method is directed to determine the relationship between two learning activities of mixing colours and fine motor skills of early childhood in Group B2 RA Al-Muhajir Bandung City. The sample in this study was 12 children. Data collection techniques used in this study include observation, documentation, and performance. The use of observation in this study is in the form of a structured checklist. Filling in this observation checklist is obtained by marking a checklist on several statements that show behaviour or behaviour in children. This study has several indicators and instrument items for each variable. Observations in this study were also carried out by giving points to each instrument item per indicator of each variable. The points are described as follows: Point 1 (Less Active), Point 2 (Quite Active), Point 3 (Active) and Point 4 (Very Active). Observations were made to obtain data from variable X (color mixing learning activities) (Arias, Arias, & Rodríguez-Medina, 2021).

In this study using data collection through performance assessment using three indicators which are broken down into 10 sub-indicators through checklist-shaped performance guidelines. Performance assessment is used to collect data on variable Y (fine motor skills) of early childhood in Group B2 RA Al-Muhajir Bandung using a rating scale through giving points as follows: Point 1 (Undeveloped), Point 2 (Starting to Develop), Point 3 (Developing as Expected), and Point 4 (Developing Very Well). Documentation in this study is in the form of photos or videos of learning activities to mix colors and fine motor skills of early childhood in Group B2 RA Al-Muhajir Bandung in order to avoid the subjectivity of observation and research. The data analysis technique used in this research is correlation using statistics through instrument validity and reliability tests, item analysis per indicator, normality test, correlation analysis through linear regression test, calculating the correlation coefficient and coefficient of determination, and then testing the hypothesis to measure the degree of relationship between variable X and variable Y. Variable X (independent variable) in this study is color mixing activity, while variable Y (dependent variable) is fine motor skills of early childhood.

RESULT AND DISCUSSION

The results of research and data collection through observation and performance techniques on 12 children of Group B2 RA Al-Muhajir Bandung consisting of 6 girls and 6 boys, obtained an average result for variable X (learning activity of mixing colors) 85.70 which is included in the range 80-100 with the interpretation of the category very good. Thus, the activity of mixing colours in Group B2 RA Al-Muhajir Bandung is included in the category of very good activity.
The results of the analysis can be seen in the following table:

Table 1. Analysis Results Per Indicator Variable X

<table>
<thead>
<tr>
<th>No.</th>
<th>Indicator</th>
<th>Score</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Children can exercise small muscles in body parts</td>
<td>84,325</td>
<td>Very good</td>
</tr>
<tr>
<td>2</td>
<td>The child can coordinate finger and eye muscles that are in sync</td>
<td>84,666</td>
<td>Very good</td>
</tr>
<tr>
<td>3</td>
<td>The child can mix colors and produce a good color mixture.</td>
<td>88,133</td>
<td>Very good</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>85,70</td>
<td>Very good</td>
</tr>
</tbody>
</table>

During the implementation of the learning activity of mixing colors, most children did the activity very well. Most children were able to apply colors using a brush well, choose the correct color, and the child grasped the brush well and correctly. In art learning in kindergarten, in this case learning with color mixing is able to improve art development in line with emphasizing the importance of developing children's fine motor skills. Fine motor skills are children's abilities to carry out creative activities and involve coordination between hands, fingers and eyes.

Based on the results of calculations and data analysis regarding early childhood fine motor skills in Group B2 RA Al-Muhajir Panyileukan Bandung City with indicators used (1) Ability and flexibility to use hands, eyes and fingers, (2) Exploring more on stationery, (3) Exploring and self-expressing what is felt, resulting in an average variable value of 88.05 which is included in the range 80-100 with the interpretation of the category very good. Thus, the excellent activity category includes the fine motor skills of early childhood in Group B2 RA Al-Muhajir Bandung. The results of the analysis can be seen in the following table:

Table 2. Results of Analysis Per Indicator of Variable Y

<table>
<thead>
<tr>
<th>No.</th>
<th>Indicator</th>
<th>Score</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ability and flexibility to use hands, eyes and fingers</td>
<td>82,25</td>
<td>Very good</td>
</tr>
<tr>
<td>2</td>
<td>Explore more on stationery</td>
<td>86,006</td>
<td>Very good</td>
</tr>
<tr>
<td>3</td>
<td>Exploring and expressing what you feel</td>
<td>95,8</td>
<td>Very good</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>88,05</td>
<td>Very good</td>
</tr>
</tbody>
</table>

Based on the results of the study, it was found that early childhood in Group B2 RA Al-Muhajir Panyileukan Bandung City children's fine motor skills were in the very good category. Most children have been able to coordinate their hands and eyes well and correctly, move and flex their wrists well, and express themselves with their movements when mixing colors.

According to the opinion of (Syamsu Yusuf, 2014) quoted from Nurkamelia, it explains that; "Fine motor growth includes the growth of the hand body which is generally indicated by the expertise of doodling with writing utensils and drawing simple shapes (lines and irregular circles) and playing with blocks at the age of 1-3 years, at the age of 4-6 years, fine motor growth in early childhood is indicated by the expertise of children who begin to control motor use without the encouragement of others, learning to cut, draw, fold paper".

To determine the level of relationship between color mixing learning activities and fine motor skills in early childhood, the requirements test is first carried out with several stages, and the results are as follows:
The normality test results for variable X (color mixing learning activity) are chi squared (χ^2) count (0.235) < from chi squared (χ^2) table (5.991) then based on the interpretation criteria, variable X (Color Mixing Learning Activity) is interpreted as normally distributed. The results of the calculation of the frequency distribution of Variable X can be seen in the table below:

Table 3. Frequency Distribution of Variable X (Color Mixing Learning Activity)

<table>
<thead>
<tr>
<th>Interval Class</th>
<th>f</th>
<th>X</th>
<th>X^2</th>
<th>fX</th>
<th>fX^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>77,5 - 81,5</td>
<td>2</td>
<td>79,5</td>
<td>6320,25</td>
<td>159</td>
<td>12640,5</td>
</tr>
<tr>
<td>72,5 - 76,5</td>
<td>4</td>
<td>74,5</td>
<td>5550,25</td>
<td>298</td>
<td>22201</td>
</tr>
<tr>
<td>67,5 - 71,5</td>
<td>4</td>
<td>69,5</td>
<td>4830,25</td>
<td>278</td>
<td>19321</td>
</tr>
<tr>
<td>62,5 - 66,5</td>
<td>2</td>
<td>64,5</td>
<td>4160,25</td>
<td>129</td>
<td>8320,5</td>
</tr>
</tbody>
</table>

N = 12 $\sum fX$=864 $\sum fX^2$=62483

After that, make an observation and expectation table as material for finding the chi squared value. The calculation results can be seen in the following table:

Table 4. Observation (Oi) and Expectation (Ei) Variable X (Color Mixing Learning Activity)

<table>
<thead>
<tr>
<th>Class Limits</th>
<th>Z</th>
<th>Area z</th>
<th>Class Area</th>
<th>Ei</th>
<th>Oi</th>
</tr>
</thead>
<tbody>
<tr>
<td>77 - 82</td>
<td>+1+2</td>
<td>0.3461 0.4783</td>
<td>0.1322</td>
<td>1.58</td>
<td>2</td>
</tr>
<tr>
<td>72 - 77</td>
<td>+0+1</td>
<td>0.008 0.3461</td>
<td>0.3381</td>
<td>4.05</td>
<td>4</td>
</tr>
<tr>
<td>67 - 72</td>
<td>-1+0</td>
<td>0.3461 0.008</td>
<td>0.3541</td>
<td>4.24</td>
<td>4</td>
</tr>
<tr>
<td>62 - 67</td>
<td>-2-1</td>
<td>0.4783 0.3461</td>
<td>0.1322</td>
<td>1.58</td>
<td>2</td>
</tr>
</tbody>
</table>

The results of the chi squared (X^2) calculation are as follows:

$$X^2 = \sum \frac{(Oi - Ei)^2}{Ei}$$

$$= \left(\frac{(2 - 1.58)^2}{1.58}\right) + \left(\frac{(4 - 4.05)^2}{4.05}\right) + \left(\frac{(4 - 4.24)^2}{4.24}\right) + \left(\frac{(2 - 1.58)^2}{1.58}\right)$$

$$= \frac{0.1764}{1.58} + \frac{0.0025}{4.05} + \frac{0.0576}{4.24} + \frac{0.1764}{1.58}$$

$$= 0.111 + 0.000 + 0.013 + 0.111 = 0.235$$

Furthermore, the price of chi squared table (X^2) at 5% significance is 2 = 5.991. Thus, because the chi squared (X^2) count (0.235) < from the chi squared (X^2) table (5.991) then based on the interpretation criteria, variable X (learning activity of mixing colors) is interpreted as normally distributed.

Then, the normality test results for variable Y (fine motor skills of early childhood) are chi squared (X^2) count (3.124) < from chi squared (X^2) table (5.991) then based on the interpretation criteria, variable Y (Fine Motor Skills of Early Childhood) is interpreted as normally distributed. The results of the calculation of the frequency distribution of Variable Y can be seen in the table below:
Table 5. Frequency Distribution of Y Variables
(Early Childhood Fine Motor Skills)

<table>
<thead>
<tr>
<th>Interval Class</th>
<th>f</th>
<th>X</th>
<th>X²</th>
<th>fX</th>
<th>fX²</th>
</tr>
</thead>
<tbody>
<tr>
<td>78.5 - 83.5</td>
<td>3</td>
<td>81</td>
<td>6561</td>
<td>243</td>
<td>19683</td>
</tr>
<tr>
<td>72.5 - 77.5</td>
<td>3</td>
<td>75</td>
<td>5625</td>
<td>225</td>
<td>16875</td>
</tr>
<tr>
<td>66.5 - 71.5</td>
<td>2</td>
<td>69</td>
<td>4761</td>
<td>138</td>
<td>9522</td>
</tr>
<tr>
<td>60.5 - 65.5</td>
<td>4</td>
<td>63</td>
<td>3969</td>
<td>252</td>
<td>15876</td>
</tr>
</tbody>
</table>

N= 12 \[\sum fX=858\] \[\sum fX^2=61956\]

After that, make an observation and expectation table as material for finding the chi squared value. The calculation results can be seen in the following table:

Table 6. Observation (Oi) and Expectation (Ei) of Variable Y
(Early Childhood Fine Motor Skills)

<table>
<thead>
<tr>
<th>Class Limits</th>
<th>Z</th>
<th>Area z</th>
<th>Class Area</th>
<th>Ei</th>
<th>Oi</th>
</tr>
</thead>
<tbody>
<tr>
<td>78 - 84</td>
<td>+0,87 +1,68</td>
<td>0,2939 0,4474</td>
<td>0,1535</td>
<td>1,84</td>
<td>3</td>
</tr>
<tr>
<td>72 - 78</td>
<td>+0,06 +0,87</td>
<td>0,008 0,2939</td>
<td>0,2859</td>
<td>3,43</td>
<td>3</td>
</tr>
<tr>
<td>66 - 72</td>
<td>-0,74 +0,06</td>
<td>0,2642 0,008</td>
<td>0,2722</td>
<td>3,26</td>
<td>2</td>
</tr>
<tr>
<td>60 - 66</td>
<td>-1,55 -0,74</td>
<td>0,4357 0,2642</td>
<td>0,1715</td>
<td>2,05</td>
<td>4</td>
</tr>
</tbody>
</table>

The results of the chi squared (X²) calculation are as follows:

\[
X^2 = \sum \frac{(O_i - E_i)^2}{E_i}
\]

\[
= \frac{(3 - 1,84)^2}{1,84} + \frac{(3 - 3,43)^2}{3,43} + \frac{(2 - 3,26)^2}{3,26} + \frac{(4 - 2,05)^2}{2,05}
\]

\[
= \frac{1,3456}{1,84} + \frac{1,0189}{3,43} + \frac{1,5876}{3,26} + \frac{3,8025}{2,05}
\]

\[
= 0,731 + 0,053 + 0,486 + 1,854 = 3,124
\]

Furthermore, the price of chi squared table (X²t) at 5% significance is \(2 = 5,991\). Thus, because the chi squared (x²) count (3.124) is less than the chi squared (x²) table (5.991), based on the interpretation criteria, variable Y (children's fine motor skills) is interpreted as normally distributed.

Then, the results of the linearity test (linear regression) obtained the value of Fcount (0.31) ≤ from Ftable (8.88) can be interpreted that the regression of Y on X is linear. The recapitulation results of the linearity test can be seen in the following table:

Table 7. Avana Summary for Regression \(Y = 17.03 + 1.39X\)

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>db</th>
<th>JK</th>
<th>RJK</th>
<th>Fcount</th>
<th>Ftable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>12</td>
<td>64512,33</td>
<td>-</td>
<td>0,31</td>
<td>8,88</td>
</tr>
<tr>
<td>Regression (a)</td>
<td>1</td>
<td>63845,84</td>
<td>63845,84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression (b/a)</td>
<td>1</td>
<td>486,438</td>
<td>486,438</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuna Match (TC)</td>
<td>6</td>
<td>70,275</td>
<td>11,7125</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion because Fcount (0.31) < than Ftable (8,88) can be interpreted that the regression of Y on X is linear.
Based on the results of the normality and linearity tests, the data obtained for both variables are normally distributed and the regression between variables is linear. Therefore, to calculate the correlation coefficient, we can use the product moment correlation formula.

\[
r_{xy} = \frac{N \sum XY - (\sum X)(\sum Y)}{\sqrt{(N \sum X^2 - (\sum X)^2)(N \sum Y^2 - (\sum Y)^2)}}
\]

\[
= \frac{12 \times 62722.8 - (855)(875.3)}{\sqrt{(12 \times 61180.5 - (855)^2)(12 \times 64512.33 - (875.3)^2)}}
\]

\[
= \frac{752673.6 - 748381.5}{\sqrt{734166 - 731025}(774147.96 - 766150.09)}
\]

\[
= \frac{4292.1}{\sqrt{3141}(7997.87)} = \frac{4292.1}{25121309.67} = 0.85
\]

It is known that the correlation coefficient value is 0.85 which is included in the interval 0.80 - 1.00 so that it can be interpreted as a very strong / very high level of relationship. Then, it is supported by hypothesis testing which produces a \(t \text{count} = 5.153 \) and \(t \text{table} = 2.228 \) with \(db = 10 \) at the 5% significance level.

\[
t = \frac{r \sqrt{N - 2}}{\sqrt{1 - r^2}}
\]

\[
= \frac{0.85 \sqrt{12 - 2}}{\sqrt{1 - 0.85^2}} = \frac{0.85 \times 3.16}{\sqrt{0.28}} = \frac{2.68}{0.52} = 5.153
\]

Referring to the significance test criteria, because \(t \text{count} (5.153) > t \text{table} (2.228) \), \(H_0 \) is rejected and \(H_a \) is accepted, that is, it can be said that there is a significant relationship between variable X (Color Mixing Learning Activities) and variable Y (Fine Motor Skills of Early Childhood) in Group B2 RA Al-Muhajir Bandung.

The calculation of the coefficient of determination results in a value of 72.25%, meaning that the level of truth of the correlation between learning activities mixing colors with the emergence of fine motor skills of early childhood. In other words, although other factors contributed 27.75% to the fine motor skills of early childhood in Group B2 RA Al-Muhajir Bandung City, the learning activity of mixing colors contributed 72.25%.

\[
KD = r^2 \times 100%
\]

\[
= 0.85^2 \times 100%
\]

\[
= 0.7225 \times 100%
\]

\[
= 72.25\%
\]

These results are in line with the theory from Fajar and Nurul in their research article on color mixing stating that color mixing activities are very suitable for children of various ages with these activities children can be able to train imagination, produce a work, and train fine motor muscles. Color Mixing Activities are only one way or process that can be used to develop fine motor skills in early childhood. The research conducted on the learning activity of mixing colors and the development of fine motor skills among early
childhood learners at Group B2 RA Al-Muhajir Bandung yields intriguing insights. The study reveals that the children's engagement in color mixing activities resulted in a very good level of performance, as evidenced by their ability to exercise small muscles, coordinate finger and eye movements, and produce good color mixtures. Furthermore, the research underscores the significance of art-based learning, particularly in enhancing fine motor skills crucial for creative expression and coordination.

Moreover, the findings shed light on the correlation between color mixing activities and the development of early childhood fine motor skills. Through rigorous statistical analysis, the research establishes a strong positive relationship between these variables, indicating that color mixing activities significantly contribute to the enhancement of fine motor skills among young learners. Notably, the study's results align with existing theories emphasizing the role of hands-on activities, such as color mixing, in nurturing children's imagination, creativity, and fine motor muscle development. Furthermore, the research underscores the importance of integrating such activities into early childhood education curricula, as they not only foster artistic expression but also facilitate holistic development. By recognizing the substantial impact of color mixing activities on fine motor skill acquisition, educators and policymakers can make informed decisions to enhance early childhood learning environments. Ultimately, the study underscores the transformative potential of art-based pedagogies in promoting comprehensive skill development among young learners, thereby enriching their educational experiences and future prospects.

CONCLUSION

Based on the results of the research data analysis, the following conclusions were obtained:

The learning activity of mixing colours in Group B2 RA Al-Muhajir Bandung obtained an average value of 85.70 and included on a scale of 80 - 100 with an excellent interpretation category and fine motor skills of early childhood in Group B2 RA Al-Muhajir Panyileukan Bandung City obtained an average value of 88.05 and included on a scale of 80 - 100 with an excellent interpretation category.

The relationship between learning activities mixing colors with fine motor skills of early childhood in Group B2 RA Al-Muhajir Bandung City has a significant relationship, it can be seen from the results of the correlation coefficient of 0.85 which is in the interval 0.80 - 1.000, with the interpretation of a powerful / very high level of relationship. Then the value of tcount = 5.153 and ttable = 2.228 with db = 10 at the 5% significance level is obtained, because tcount (5.153) > ttable (2.228) then Ho is rejected and Ha is accepted. There is a significant relationship between variable X (Color Mixing Learning Activities) and variable Y (Fine Motor Skills of Early Childhood) in Group B2 RA Al-Muhajir Bandung City.

In addition, the level of correlation truth is 72.25% or the learning activity of mixing colors produces a contribution of 72.25% to the fine motor skills of early childhood in Group B2 RA Al-Muhajir Bandung City, although other factors contribute 27.75%.

Suggestions given for the parties concerned, including: Teachers or educators are recommended to inform their colleagues to use color mixing activities in children's fine motor skills. More help to recognize children's fine motor skills, and innovate in learning activities, methods or media, especially in fine motor skills.

For schools, ideal techniques for organizing and facilitating the teaching and learning process are needed to encourage one aspect of child growth, namely fine motor skills in early childhood. In addition, it is expected that there will be efforts to increase understanding of fine motor skills in early childhood through seminars targeted at teachers and guardians. In addition, it is expected that the school can fully realize its vision and mission to improve itself into a competitive institution in the field of early childhood education. For researchers, this research can be an example, guide, comparison, and complement for further research examining the same variables. In addition, this research is
also expected to provide new innovations and insights that compare the variables used in this study with other potential variables that might be studied.

REFERENCES

Copyright Holder:

First Publication Right:
© Bulletin of Early Childhood

This article is under:
CC BY SA