Cathodic Corrosion Protection on Low Carbon Steel Type H-beam (SM490YB) Using Zinc (Zn) Anode with Soil Corrosive Media Mixed with NaCl

Authors

  • Lazuardi Lazuardi Politekhnik Negeri Malang, Indonesia
  • Muhammad Akhlis Rizza Politekhnik Negeri Malang, Indonesia
  • Sugeng Hadi Susilo Politekhnik Negeri Malang, Indonesia
  • Maryono Maryono Politekhnik Negeri Malang, Indonesia

DOI:

https://doi.org/10.51278/ajse.v2i2.1019

Keywords:

Surface Corrosion, Cathodic Protection, H-beam Steel, Zinc Anode(Zn)

Abstract

H-beam steel is often used as a basic material for building construction on the coast. Cases that often occur are H-beam steel that is installed quickly corrodes. This incident is caused by the coastal area belongs to an environment with a high level of corrosiveness.From the results of the pH tester test, the value of the degree of acidity is in rangeof pH=5 to pH=7.Coastal soils contain a lot of chloride Cl. In an acidic environment accompanied by a chloride Cl element, it triggers the breakdown of the passive layer on the surface which causes an anodic region to form so that the steel is in a state of releasing electrons. The problem that occurs can be overcome using a sacrificial anode cathodic protection system, with a zinc metal protection mechanism (Zn) 99, 99% which is used as a sacrificial anode has a lower potential value than the potential value of H-beam steel as a cathode protected by zinc metal (Zn) . This value of zinc metal (Zn) is more negative than the Fe steel which potential value is . The value of the potential difference is that it can be ascertained that the released Zn electrons can flow and adhere to the protected H-beam steel.

Keywords: Surface Corrosion, Cathodic Protection, H-beam Steel, Zinc Anode(Zn)

References

[1] E. Gunawan, “Analisa pengaruh temperatur terhadap sifat mekanis dan struktur mikro pada baja karbon rendah (st41) dengan metode pack carbirizinG,” Tek. Eng. Sains J., vol. 1, no. 2, pp. 117–124, Dec. 2017, doi: 10.51804/TESJ.V1I2.133.117-124.
[2] P. Dai, L. Yang, X. Yun, F. Wang, and L. Zhang, “Experimental study of concrete-filled stainless steel tubular stub columns with circular and square cross-sections subjected to combined compression and bending,” Eng. Struct., vol. 305, p. 117773, Apr. 2024, doi: 10.1016/J.Engstruct.2024.117773.
[3] K. Setiawan Widana, dan Bambang Priadi, P. Teknologi Bahan Galian Nuklir -BATAN, J. Lebak Bulus Raya No, and P. Jumat, “Karakteristik Unsur Jejak Dalam Diskriminasi Magmatisme Granitoid Pulau Bangka,” EKSPLORIUM, vol. 36, no. 1, pp. 1–16, May 2015, doi: 10.55981/Eksplorium.2015.2766.
[4] R. '. (Rahmat) Ilham, K. (Komalasari) ', and R. S. (Rozanna) Irianty, “Proteksi Katodik dengan Menggunakan Anoda Korban pada Struktur Baja Karbon dalam Larutan Natrium Klorida,” J. Online Mhs. Fak. Tek. Univ. Riau, vol. 2, no. 2, pp. 1–6, 2015, Accessed: Mar. 31, 2024. [Online]. Available: https://www.neliti.com/publications/183500/
[5] N. Rukminasari, N. Nadiarti, and K. Awaluddin, “Pengaruh Derajat Keasaman (pH) Air Laut Terhadap Konsentrasi Kalsium dan Laju Pertumbuhan H A L I M E D A SP,” Torani J. Fish. Mar. Sci., vol. 24, no. 1, 2014, doi: 10.35911/TORANI.V24I1.119.
[6] B. Tanah di Jalur Krueng Peusangan hingga Krueng Geukueh, A. Utara Reza Putra, S. Huzni, S. Fonna, and N. Diterima, “Pengaruh faktor lingkungan terhadap potensi korosi pada pipa air bawah tanah di jalur krueng peusangan hingga krueng geukueh, aceh utara,” flywheeL J. Tek. Mesin Untirta, vol. 1, no. 1, pp. 14–19, Apr. 2018, doi: 10.36055/FWL.V1I1.3289.
[7] K. R. (Kenneth R. C. J. W. A. T. K. Trethewey, “Korosi untuk mahasiswa sains dan rekayasa,” (No Title), Accessed: Mar. 31, 2024. [Online]. Available: https://cir.nii.ac.jp/crid/1130282269205132928
[8] J. W. Paik, J. K. Cha, Y. W. Song, D. S. Thoma, R. E. Jung, and U. W. Jung, “Effect of Schneiderian membrane integrity on bone formation in sinus augmentation: An experimental study in rabbits,” J. Clin. Periodontol., vol. 49, no. 1, pp. 76–83, Jan. 2022, doi: 10.1111/JCPE.13562.
[9] P. A. Games, “Limitations of Analysis of Covariance on Intact Group Quasi-Experimental Designs,” J. Exp. Educ., vol. 44, no. 4, pp. 52–54, 1976, doi: 10.1080/00220973.1976.11011551.
[10] M. F. J. Dijkstra, H. Buwalda, A. W. F. De Jong, A. Michorius, J. G. M. Winkelman, and A. A. C. M. Beenackers, “Experimental comparison of three reactor designs for photocatalytic water purification,” Chem. Eng. Sci., vol. 56, no. 2, pp. 547–555, Jan. 2001, doi: 10.1016/S0009-2509(00)00259-1.
[11] Philip H. Henning, “Experimental Research Methods,” Handb. Res. Educ. Commun. Technol., pp. 1007–1029, Jan. 2013, doi: 10.4324/9781410609519-51.
[12] J. Fjermestad and S. R. Hiltz, “An Assessment of Group Support Systems Experimental Research: Methodology and Results,” J. Manag. Inf. Syst., vol. 15, no. 3, pp. 7–149, 1998, doi: 10.1080/07421222.1998.11518216.
[13] D. M. Johnson, D. Allason, and P. M. Cronin, “Large scale experimental research of VCEs – A summary from one viewpoint,” J. Loss Prev. Process Ind., vol. 89, p. 105287, Jul. 2024, doi: 10.1016/J.JLP.2024.105287.
[14] L. Texeira, D. Calisaya-Azpilcueta, C. Cruz, Y. L. Botero, and L. A. Cisternas, “Impact of the use of seawater on acid mine drainage from mining wastes,” J. Clean. Prod., vol. 383, p. 135516, Jan. 2023, doi: 10.1016/J.JCLEPRO.2022.135516.
[15] T. Waly, M. D. Kennedy, G. J. Witkamp, G. Amy, and J. C. Schippers, “Predicting and measurement of pH of seawater reverse osmosis concentrates,” Desalination, vol. 280, no. 1–3, pp. 27–32, Oct. 2011, doi: 10.1016/J.DESAL.2011.06.057.
[16] A. Ratanpara et al., “Towards green carbon capture and storage using waste concrete based seawater: A microfluidic analysis,” J. Environ. Manage., vol. 345, p. 118760, Nov. 2023, doi: 10.1016/J.JENVMAN.2023.118760.
[17] T. V. Raudina et al., “Colloidal organic carbon and trace elements in peat porewaters across a permafrost gradient in Western Siberia,” Geoderma, vol. 390, p. 114971, May 2021, doi: 10.1016/J.GEODERMA.2021.114971.
[18] K. Zidan, L. Mandi, A. Hejjaj, N. Ouazzani, and A. Assabbane, “Soil fertility and agro-physiological responses of maize (Zea mays) irrigated by treated domestic wastewater by hybrid multi-soil-layering technology,” J. Environ. Manage., vol. 351, p. 119802, Feb. 2024, doi: 10.1016/J.JENVMAN.2023.119802.
[19] R. A. M. Williams et al., “Estimating soil health in urban allotments: Integrated two-way soil quality index and free-living amoebae in nitrogen recycling,” Soil Environ. Heal., vol. 1, no. 4, p. 100046, Dec. 2023, doi: 10.1016/J.SEH.2023.100046.
[20] N. Olgun et al., “Lithological controls on lake water biogeochemistry in Maritime Antarctica,” Sci. Total Environ., vol. 912, p. 168562, Feb. 2024, doi: 10.1016/J.SCITOTENV.2023.168562.
[21] P. Castillo et al., “Biogeochemistry of plant essential mineral nutrients across rock, soil, water and fruits in vineyards of Central Chile,” CATENA, vol. 196, p. 104905, Jan. 2021, doi: 10.1016/J.CATENA.2020.104905.
[22] M. Vinichuk, R. Bergman, S. Sundell-Bergman, and K. Rosén, “Response of spring wheat and potato to foliar application of Zn, Mn and EDTA fertilizers on 137Cs uptake,” J. Environ. Radioact., vol. 227, p. 106466, Feb. 2021, doi: 10.1016/J.JENVRAD.2020.106466.
[23] A. G. Caporale, M. Palladino, S. De Pascale, L. G. Duri, Y. Rouphael, and P. Adamo, “How to make the Lunar and Martian soils suitable for food production - Assessing the changes after manure addition and implications for plant growth,” J. Environ. Manage., vol. 325, p. 116455, Jan. 2023, doi: 10.1016/J.JENVMAN.2022.116455.
[24] F. Yousefi, T. White, D. R. Lentz, C. R. M. McFarlane, and K. G. Thorne, “Middle Devonian Evandale porphyry Cu-Mo (Au) deposit, southwestern New Brunswick, Canada: Analysis of petrogenesis to potential as a source for distal intrusion-related epithermal gold mineralization,” Ore Geol. Rev., vol. 162, p. 105716, Nov. 2023, doi: 10.1016/J.OREGEOREV.2023.105716.
[25] S. Metz, A. Bertsch, and P. Renaud, “Partial release and detachment of microfabricated metal and polymer structures by anodic metal dissolution,” J. Microelectromechanical Syst., vol. 14, no. 2, pp. 383–391, Apr. 2005, doi: 10.1109/JMEMS.2004.839328.
[26] A. Levallois et al., “Aluminium-based galvanic anode impacts the photosynthesis of microphytobenthos and supports the bioaccumulation of metals released,” Aquat. Toxicol., vol. 258, p. 106501, May 2023, doi: 10.1016/J.AQUATOX.2023.106501.
[27] Z. Liu, X. Zhang, J. Luo, and Y. Yu, “Application of metal-organic frameworks to the anode interface in metal batteries,” Chinese Chem. Lett., p. 109500, Jan. 2024, doi: 10.1016/J.CCLET.2024.109500.

Downloads

Published

2023-12-31

How to Cite

Lazuardi, L., Rizza, M. A., Hadi Susilo, S., & Maryono, M. (2023). Cathodic Corrosion Protection on Low Carbon Steel Type H-beam (SM490YB) Using Zinc (Zn) Anode with Soil Corrosive Media Mixed with NaCl. Asian Journal Science and Engineering, 2(2), 61–81. https://doi.org/10.51278/ajse.v2i2.1019

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.