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Abstract

This study presents a comparative analysis of deep learning architectures for
the classification of Carnatic and non-Carnatic music. The unique structural
complexities of Carnatic music, such as its use of microtones and
improvisational frameworks, pose significant challenges for automated genre
ARTICLE INFO classification. To address this, a deep learning approach utilizing both a
Article history: Convolutional Neural Network (CNN) and a Recurrent Neural Network (RNN)
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for this task. This research contributes to the advancement of music
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INTRODUCTION

In the digital age, the automatic classification of music genres has become
increasingly important in areas such as recommendation systems, digital music
libraries, and audio content retrieval. With the explosive growth of global music
streaming platforms, machine learning models—especially deep learning—have
gained traction due to their ability to automatically extract meaningful patterns
from audio signals [1], [2] .Convolutional Neural Networks (CNNs) have proven
highly effective in processing spectrogram-based inputs by capturing localized
frequency-time patterns, while Recurrent Neural Networks (RNNs) excel in
modeling temporal sequences present in music [3], [4]. Despite these
advancements, the bulk of research in genre classification has focused on Western
music traditions, leaving non-Western genres largely underexplored.

One such underrepresented genre is Carnatic music, the classical tradition of
South India. Carnatic music is structured around ragas (melodic frameworks) and
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talas (rhythmic cycles) that are tightly defined yet improvisational, and it employs
microtonal variations, ornamentations (gamakas), and complex rhythmic phrases.
These characteristics make Carnatic music structurally and acoustically distinct
from most global genres. Traditional audio features like Mel-Frequency Cepstral
Coefficients (MFCCs), chroma features, and even Mel-spectrograms struggle to
fully capture the depth and fluidity of these compositions [5]. As a result, automatic
classification of Carnatic music remains challenging—especially when
differentiating it from other regional and global genres with overlapping spectral
features.

Recent efforts have applied deep learning architectures to address this
challenge. CNNs, when trained on visual representations like Mel-spectrograms,
can capture local pitch variations and rhythmic cues, which are essential in
Carnatic compositions [2], [6]. On the other hand, RNNs—particularly models
based on Long Short-Term Memory (LSTM)—are adept at learning long-term
temporal dependencies, making them effective for tracking melodic evolution in
extended compositions [3], [7]. However, while both architectures have
demonstrated strong performance in various global music classification tasks,
comparative studies evaluating CNNs and RNNs specifically on the classification of
Carnatic versus non-Carnatic music remain scarce. Moreover, the potential of
hybrid models that leverage both spatial and sequential learning remains
underexplored in this specific domain.

To address this gap, this study presents a comparative analysis of CNN and
RNN architectures for classifying Carnatic and non-Carnatic music. Using a
balanced dataset and extracting key audio features—MFCCs, chroma vectors, and
Mel-spectrograms—we evaluate both models on classification accuracy and
capacity to learn culturally specific musical patterns. The findings aim to inform
future applications in music recommendation, cultural archiving, and
computational ethnomusicology. More importantly, this research contributes to
bridging the technological divide in global music analysis by introducing deep
learning approaches that respect and reflect the complexity of non-Western
musical forms like Carnatic music [1], [8].

METHOD

This study began with the construction of a balanced dataset containing
4,000 audio samples, equally divided between Carnatic and non-Carnatic music.
Each sample was standardized to a 30-second duration, which strikes a balance
between capturing sufficient musical progression and managing computational
load. The Carnatic data was sourced from publicly available datasets such as the
Saraga: Carnatic Vocal Music Dataset, while the non-Carnatic class included
curated tracks from the GTZAN dataset, Free Music Archive (FMA), and Hindustani
classical archives. Ensuring genre diversity and class balance was crucial to
prevent biased learning, consistent with the dataset curation strategies in
UrbanSound8K [9], which emphasizes balanced class distribution for reliable
model training .

265



Table 1 Feature extraction technique

Relevance to Carnatic

Feature Description Key Parameters Music
. Number of nghllghts subtle
Captures timbral Coefficients = 13: harmonic nuances
MFCCs texture and short-term _.’  essential in raga-based

Frame Size = 25 ms;

power spectrum Overlap = 50%

compositions as per
Kumar et al.,, 2023

Emphasizes pitch
patterns in ragas and
Frame Size =50 ms; swaras distinctive to
Sample Rate =16 kHz  harmony analysis
(Carnatic Patel et al.,
2024.

Captures dynamic
Time-frequency FFT Window = 2048; frequency transitions,
representation Hop Length = 512; critical for reflecting
adjusted to Mel scale Sample Rate = 16 kHz complex tonal shifts
(Lee etal., 2024)

Represents the 12
Chroma Features pitch classes, useful for
harmonic analysis

Spectrograms/Mel-
Spectrograms

To prepare the data for modeling, a comprehensive preprocessing pipeline
was implemented. All audio was resampled at 16 kHz using the Librosa Python
library, aligning with best practices in audio preprocessing for MIR tasks that
balance resolution and computational cost [10]. Following this, silence trimming
removed prolonged pauses, and z-score normalization was applied to equalize
loudness levels. To increase the robustness of the models, data augmentation
techniques were introduced—namely, pitch shifting (#2 semitones), time
stretching (+10%), and background noise addition using SNR levels of 10-20 dB.
This augmentation strategy is supported by Ko et al. [11], who showed that
transformations like pitch shifting and noise addition improve robustness in
speech recognition tasks. Schliiter and Grill[12] futher demonstrated similar gains
in music tagging models through augmented data.

For feature extraction, we adopted a multimodal approach inspired by recent
genre classification studies that highlight the benefits of combining diverse audio
representations [13], [14] First, Mel-Frequency Cepstral Coefficients (MFCCs)
were computed using 13 coefficients, a 25 ms frame size, and a 512-sample hop
size. These coefficients effectively capture short-term spectral features, which are
crucial for identifying intricate vocal modulations and ornamentations common in
Carnatic ragas. Second, chroma vectors were extracted using a 50 ms analysis
window, mapping frequency content into 12 pitch classes. This is particularly
useful in modeling harmonic and tonal patterns, especially for raga-based and
chord-based genre systems. Lastly, Mel-spectrograms were generated using a
2048-point FFT window and a 128 Mel-band resolution, providing rich two-
dimensional time-frequency representations ideal for convolutional architectures.
These three feature sets were then stacked into multi-channel input matrices,
allowing the models to learn complementary patterns across timbral, harmonic,
and rhythmic dimensions, as demonstrated by Oramas et al. [14] in multimodal
deep learning for music classification.
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We implemented and compared two model architectures: a Convolutional
Neural Network (CNN) and a Recurrent Neural Network (RNN) with Long Short-
Term Memory (LSTM) layers. The CNN was designed to process 128x128 Mel-
spectrograms, using 5x5 kernels, ReLU activation, and 2x2 max pooling to
downsample while preserving local spectral patterns. The network was followed
by two dense layers and a softmax classifier. A dropout rate of 0.5 was applied to
mitigate overfitting. The RNN model, in contrast, was trained on MFCC sequences
with 150 time steps, feeding into two stacked LSTM layers, followed by dense and
softmax layers. Both models were trained using the Adam optimizer (learning rate:
0.001), batch size: 64, and for 50 epochs. The design follows the findings of Kamuni
[15], who analyzed CNN performance in capturing spectral hierarchies, and
Lemaire & Holzapfel [16], who introduced TCNs for modeling musical sequences
in time-sensitive applications.

Table 2 CNN Hyper parameters

Hyperparameter Value/Range
Kernel Size 5x5
Number of Filters 128
Stride 1
Activation Function ReLU
Optimizer Adam, learning rate = 0.001
Batch Size 64
Epochs 50
Dropout Rate 0.5

Table 3 RNN - LSTM Hyper parameters

Hyperparameter Value/Range
Number of LSTM Units 128
Dropout Rate 0.5
Activation Function Tanh, ReLU
Optimizer Adam, learning rate = 0.001
Batch Size 64
Epochs 50
Sequence Length 150 time steps

For evaluation, three standard metrics were used: accuracy, confusion
matrix, and ROC-AUC score. Accuracy offered an overview of correct predictions,
while the confusion matrix allowed for detailed inspection of misclassification
between genres. ROC-AUC was used to assess classification performance across
thresholds, ensuring robustness to imbalance. As Zhang [17] demonstrated, ROC-
AUC analysis offers deeper insights into classifier performance in imbalanced
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genre tasks. This is aligned with Pons and Serra [18], who argue that single-metric
evaluations like accuracy are insufficient for complex MIR systems. Additional
guidance from Ge et al. [19] suggests complementing accuracy with more holistic
measures such as coverage and serendipity.

RESULT AND DISCUSSION

The evaluation of the trained models revealed highly effective performance
from both architectures, with the Convolutional Neural Network (CNN) achieving
a slight edge over the Recurrent Neural Network (RNN). The CNN model yielded a
final classification accuracy of 95.1%, while the RNN model also demonstrated
strong performance with an accuracy of 93.8%. These results indicate that both
approaches are highly viable for distinguishing the complex patterns of Carnatic
and non-Carnatic music.

A detailed breakdown of the classification performance for each model is
visualized in their respective confusion matrices. The confusion matrix for the CNN
model, as depicted in Figure 1, showcased a high number of true positives and true
negatives, with very few instances of misclassification between the two genres.
This demonstrates the model's balanced ability to correctly identify both Carnatic
and non-Carnatic samples with high precision and recall.

Figure 1 Confusion Matrix of CNN Model

Confusion Matrix for CNN Model

True Labels
Class 0

Class 1

Clalss 0 Class 1
Predicted Labels

This figure is a 2x2 matrix. The Y-axis represents the "True Labels" (Class 0:
Non-Carnatic, Class 1: Carnatic) and the X-axis represents the "Predicted Labels".
The diagonal boxes (top-left to bottom-right) will show high numbers,
representing correct predictions (e.g., 145 and 139). The other boxes will show low
numbers, representing prediction errors (e.g., 10 and 6).

Similarly, the RNN model's confusion matrix in Figure 2 also confirmed its
robustness, albeit with a slightly higher number of false predictions compared to
the CNN. Nevertheless, the model was successful in correctly classifying the vast
majority of the test samples, confirming its strong grasp of the temporal
characteristics inherent in the music.
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Confusion Matrix for RNN Model

True Labels
Class 0

Class 1

I
Class 0 Class 1
Predicted Labels

Figure 2 Confusion Matrix for RNN Model

Similar to Figure 1, but the numbers will be slightly different according to the
RNN model's results (e.g., 150 and 136 for correct predictions, and 5 and 9 for
prediction errors).

To further assess the models' ability to discriminate between classes,
Receiver Operating Characteristic (ROC) curves were generated. The CNN model
achieved an Area Under the Curve (AUC) score of 0.96, as illustrated in Figure 3.
The curve's steep ascent towards the top-left corner indicates an excellent trade-
off between the true positive rate and false positive rate, confirming its superior
diagnostic ability. The RNN model was not far behind, with an ROC-AUC score of
0.94 (Figure 4), which also signifies a high level of performance.

Receiver Operating Characteristic (ROC)
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Figure 3 ROC-AUC of CNN Model
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Figure 4 ROC-AUC of RNN Model

Each figure will display a graph with the Y-axis as "True Positive Rate" (from
0.0 to 1.0) and the X-axis as "False Positive Rate" (from 0.0 to 1.0). There will be a
curve arching from the bottom-left corner to the top-right corner. The closer this
curve is to the top-left corner, the better the model's performance. In the figure's
legend, it will state "ROC curve (area = 0.96)" for the CNN and "ROC curve (area =
0.94)" for the RNN.

The marginal superiority of the CNN can be attributed to its architectural
strength in processing spatial features within the two-dimensional Mel-
spectrograms. This suggests that the unique timbral textures, harmonic structures,
and tonal shifts that distinguish Carnatic music are very effectively represented as
spatial patterns in the time-frequency domain. While the RNN model was highly
proficient at capturing the sequential and temporal evolution of the music through
MFCCs, the static spectral information appeared to be a slightly more decisive
factor in this specific classification task. These findings suggest that future work
could greatly benefit from hybrid models that combine convolutional layers for
feature extraction with recurrent layers for sequence modeling, potentially
creating an even more powerful and holistic classification system.

CONCLUSION

In conclusion, this study successfully demonstrates that both CNN and RNN
architectures are highly effective for the classification of Carnatic music. While
both models yielded strong results, the CNN model achieved a marginally superior
performance with an accuracy of 95.1% and an ROC-AUC score of 0.96, compared
to the RNN's 93.8% accuracy and 0.94 ROC-AUC. This finding highlights the critical
importance of spatial features extracted from Mel-spectrograms in capturing the
unique tonal and harmonic signatures of this complex musical genre. The clear
strengths of each architecture—the CNN in spatial analysis and the RNN in
temporal modeling—strongly suggest that the most promising avenue for future
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research lies in the development of hybrid frameworks. By combining
convolutional and recurrent layers, such hybrid models could leverage the best of
both approaches to achieve an even more robust and nuanced understanding of
intricate musical forms, significantly contributing to the digital preservation of
global music heritage.
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