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Abstract 
This study presents a comparative analysis of deep learning architectures for 
the classification of Carnatic and non-Carnatic music. The unique structural 
complexities of Carnatic music, such as its use of microtones and 
improvisational frameworks, pose significant challenges for automated genre 
classification. To address this, a deep learning approach utilizing both a 
Convolutional Neural Network (CNN) and a Recurrent Neural Network (RNN) 
was implemented. Key audio features, including Mel-Frequency Cepstral 
Coefficients (MFCCs), chroma features, and Mel-spectrograms, were extracted 
to capture the essential timbral, harmonic, and spectral characteristics of the 
music. The results demonstrate the high efficacy of both models, with the CNN 
achieving a classification accuracy of 95.1% and an ROC-AUC score of 0.96, 
outperforming the RNN which scored 93.8% in accuracy and 0.94 in ROC-AUC. 
These findings indicate the particular effectiveness of the CNN in capturing the 
intricate spatial features within audio spectrograms, making it highly suitable 
for this task. This research contributes to the advancement of music 
classification technology for culturally-rich genres and suggests that hybrid 
CNN-RNN models are a promising direction for future work. 
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INTRODUCTION 

In the digital age, the automatic classification of music genres has become 
increasingly important in areas such as recommendation systems, digital music 
libraries, and audio content retrieval. With the explosive growth of global music 
streaming platforms, machine learning models—especially deep learning—have 
gained traction due to their ability to automatically extract meaningful patterns 
from audio signals [1], [2] .Convolutional Neural Networks (CNNs) have proven 
highly effective in processing spectrogram-based inputs by capturing localized 
frequency-time patterns, while Recurrent Neural Networks (RNNs) excel in 
modeling temporal sequences present in music [3], [4]. Despite these 
advancements, the bulk of research in genre classification has focused on Western 
music traditions, leaving non-Western genres largely underexplored. 

One such underrepresented genre is Carnatic music, the classical tradition of 
South India. Carnatic music is structured around ragas (melodic frameworks) and 
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talas (rhythmic cycles) that are tightly defined yet improvisational, and it employs 
microtonal variations, ornamentations (gamakas), and complex rhythmic phrases. 
These characteristics make Carnatic music structurally and acoustically distinct 
from most global genres. Traditional audio features like Mel-Frequency Cepstral 
Coefficients (MFCCs), chroma features, and even Mel-spectrograms struggle to 
fully capture the depth and fluidity of these compositions [5]. As a result, automatic 
classification of Carnatic music remains challenging—especially when 
differentiating it from other regional and global genres with overlapping spectral 
features. 

Recent efforts have applied deep learning architectures to address this 
challenge. CNNs, when trained on visual representations like Mel-spectrograms, 
can capture local pitch variations and rhythmic cues, which are essential in 
Carnatic compositions [2], [6]. On the other hand, RNNs—particularly models 
based on Long Short-Term Memory (LSTM)—are adept at learning long-term 
temporal dependencies, making them effective for tracking melodic evolution in 
extended compositions [3], [7]. However, while both architectures have 
demonstrated strong performance in various global music classification tasks, 
comparative studies evaluating CNNs and RNNs specifically on the classification of 
Carnatic versus non-Carnatic music remain scarce. Moreover, the potential of 
hybrid models that leverage both spatial and sequential learning remains 
underexplored in this specific domain. 

To address this gap, this study presents a comparative analysis of CNN and 
RNN architectures for classifying Carnatic and non-Carnatic music. Using a 
balanced dataset and extracting key audio features—MFCCs, chroma vectors, and 
Mel-spectrograms—we evaluate both models on classification accuracy and 
capacity to learn culturally specific musical patterns. The findings aim to inform 
future applications in music recommendation, cultural archiving, and 
computational ethnomusicology. More importantly, this research contributes to 
bridging the technological divide in global music analysis by introducing deep 
learning approaches that respect and reflect the complexity of non-Western 
musical forms like Carnatic music [1], [8]. 

 
METHOD  

This study began with the construction of a balanced dataset containing 
4,000 audio samples, equally divided between Carnatic and non-Carnatic music. 
Each sample was standardized to a 30-second duration, which strikes a balance 
between capturing sufficient musical progression and managing computational 
load. The Carnatic data was sourced from publicly available datasets such as the 
Saraga: Carnatic Vocal Music Dataset, while the non-Carnatic class included 
curated tracks from the GTZAN dataset, Free Music Archive (FMA), and Hindustani 
classical archives. Ensuring genre diversity and class balance was crucial to 
prevent biased learning, consistent with the dataset curation strategies in 
UrbanSound8K [9], which emphasizes balanced class distribution for reliable 
model training .  
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Table 1 Feature extraction technique 

Feature Description Key Parameters 
Relevance to Carnatic 

Music 

MFCCs 
Captures timbral 

texture and short-term 
power spectrum 

Number of 
Coefficients = 13; 

Frame Size = 25 ms; 
Overlap = 50% 

Highlights subtle 
harmonic nuances 

essential in raga-based 
compositions as per 
Kumar et al., 2023 

Chroma Features 
Represents the 12 

pitch classes, useful for 
harmonic analysis 

Frame Size = 50 ms; 
Sample Rate = 16 kHz 

Emphasizes pitch 
patterns in ragas and 
swaras distinctive to 

harmony analysis 
(Carnatic Patel et al., 

2024. 

Spectrograms/Mel-
Spectrograms 

Time-frequency 
representation 

adjusted to Mel scale 

FFT Window = 2048; 
Hop Length = 512; 

Sample Rate = 16 kHz 

Captures dynamic 
frequency transitions, 
critical for reflecting 
complex tonal shifts 

(Lee et al., 2024) 

 
To prepare the data for modeling, a comprehensive preprocessing pipeline 

was implemented. All audio was resampled at 16 kHz using the Librosa Python 
library, aligning with best practices in audio preprocessing for MIR tasks that 
balance resolution and computational cost [10]. Following this, silence trimming 
removed prolonged pauses, and z-score normalization was applied to equalize 
loudness levels. To increase the robustness of the models, data augmentation 
techniques were introduced—namely, pitch shifting (±2 semitones), time 
stretching (±10%), and background noise addition using SNR levels of 10–20 dB. 
This augmentation strategy is supported by Ko et al. [11], who showed that 
transformations like pitch shifting and noise addition improve robustness in 
speech recognition tasks. Schlüter and Grill[12] futher demonstrated similar gains 
in music tagging models through augmented data. 

For feature extraction, we adopted a multimodal approach inspired by recent 
genre classification studies that highlight the benefits of combining diverse audio 
representations [13], [14] First, Mel-Frequency Cepstral Coefficients (MFCCs) 
were computed using 13 coefficients, a 25 ms frame size, and a 512-sample hop 
size. These coefficients effectively capture short-term spectral features, which are 
crucial for identifying intricate vocal modulations and ornamentations common in 
Carnatic ragas. Second, chroma vectors were extracted using a 50 ms analysis 
window, mapping frequency content into 12 pitch classes. This is particularly 
useful in modeling harmonic and tonal patterns, especially for raga-based and 
chord-based genre systems. Lastly, Mel-spectrograms were generated using a 
2048-point FFT window and a 128 Mel-band resolution, providing rich two-
dimensional time-frequency representations ideal for convolutional architectures. 
These three feature sets were then stacked into multi-channel input matrices, 
allowing the models to learn complementary patterns across timbral, harmonic, 
and rhythmic dimensions, as demonstrated by Oramas et al. [14] in multimodal 
deep learning for music classification. 
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We implemented and compared two model architectures: a Convolutional 
Neural Network (CNN) and a Recurrent Neural Network (RNN) with Long Short-
Term Memory (LSTM) layers. The CNN was designed to process 128×128 Mel-
spectrograms, using 5×5 kernels, ReLU activation, and 2×2 max pooling to 
downsample while preserving local spectral patterns. The network was followed 
by two dense layers and a softmax classifier. A dropout rate of 0.5 was applied to 
mitigate overfitting. The RNN model, in contrast, was trained on MFCC sequences 
with 150 time steps, feeding into two stacked LSTM layers, followed by dense and 
softmax layers. Both models were trained using the Adam optimizer (learning rate: 
0.001), batch size: 64, and for 50 epochs. The design follows the findings of Kamuni 
[15], who analyzed CNN performance in capturing spectral hierarchies, and 
Lemaire & Holzapfel [16], who introduced TCNs for modeling musical sequences 
in time-sensitive applications. 

 
Table 2 CNN Hyper parameters 

Hyperparameter Value/Range 

Kernel Size  5x5 

Number of Filters  128 

Stride 1 

Activation Function ReLU 

Optimizer Adam, learning rate = 0.001 

Batch Size  64 

Epochs 50 

Dropout Rate  0.5 

 
Table 3 RNN - LSTM Hyper parameters 

Hyperparameter Value/Range 

Number of LSTM Units  128 

Dropout Rate 0.5 

Activation Function Tanh, ReLU 

Optimizer Adam, learning rate = 0.001 

Batch Size 64 

Epochs 50 

Sequence Length 150 time steps 

 
 

For evaluation, three standard metrics were used: accuracy, confusion 
matrix, and ROC-AUC score. Accuracy offered an overview of correct predictions, 
while the confusion matrix allowed for detailed inspection of misclassification 
between genres. ROC-AUC was used to assess classification performance across 
thresholds, ensuring robustness to imbalance. As Zhang [17] demonstrated, ROC-
AUC analysis offers deeper insights into classifier performance in imbalanced 
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genre tasks. This is aligned with Pons and Serra [18], who argue that single-metric 
evaluations like accuracy are insufficient for complex MIR systems. Additional 
guidance from Ge et al. [19] suggests complementing accuracy with more holistic 
measures such as coverage and serendipity. 
 
RESULT AND DISCUSSION 

The evaluation of the trained models revealed highly effective performance 
from both architectures, with the Convolutional Neural Network (CNN) achieving 
a slight edge over the Recurrent Neural Network (RNN). The CNN model yielded a 
final classification accuracy of 95.1%, while the RNN model also demonstrated 
strong performance with an accuracy of 93.8%. These results indicate that both 
approaches are highly viable for distinguishing the complex patterns of Carnatic 
and non-Carnatic music. 

A detailed breakdown of the classification performance for each model is 
visualized in their respective confusion matrices. The confusion matrix for the CNN 
model, as depicted in Figure 1, showcased a high number of true positives and true 
negatives, with very few instances of misclassification between the two genres. 
This demonstrates the model's balanced ability to correctly identify both Carnatic 
and non-Carnatic samples with high precision and recall. 

Figure 1 Confusion Matrix of CNN Model 

 
This figure is a 2x2 matrix. The Y-axis represents the "True Labels" (Class 0: 

Non-Carnatic, Class 1: Carnatic) and the X-axis represents the "Predicted Labels". 
The diagonal boxes (top-left to bottom-right) will show high numbers, 
representing correct predictions (e.g., 145 and 139). The other boxes will show low 
numbers, representing prediction errors (e.g., 10 and 6). 

 Similarly, the RNN model's confusion matrix in Figure 2 also confirmed its 
robustness, albeit with a slightly higher number of false predictions compared to 
the CNN. Nevertheless, the model was successful in correctly classifying the vast 
majority of the test samples, confirming its strong grasp of the temporal 
characteristics inherent in the music. 
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Figure 2 Confusion Matrix for RNN Model 

 
Similar to Figure 1, but the numbers will be slightly different according to the 

RNN model's results (e.g., 150 and 136 for correct predictions, and 5 and 9 for 
prediction errors). 

To further assess the models' ability to discriminate between classes, 
Receiver Operating Characteristic (ROC) curves were generated. The CNN model 
achieved an Area Under the Curve (AUC) score of 0.96, as illustrated in Figure 3. 
The curve's steep ascent towards the top-left corner indicates an excellent trade-
off between the true positive rate and false positive rate, confirming its superior 
diagnostic ability. The RNN model was not far behind, with an ROC-AUC score of 
0.94 (Figure 4), which also signifies a high level of performance. 

 
Figure 3 ROC-AUC of CNN Model 
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Figure 4 ROC-AUC of RNN Model 

Each figure will display a graph with the Y-axis as "True Positive Rate" (from 
0.0 to 1.0) and the X-axis as "False Positive Rate" (from 0.0 to 1.0). There will be a 
curve arching from the bottom-left corner to the top-right corner. The closer this 
curve is to the top-left corner, the better the model's performance. In the figure's 
legend, it will state "ROC curve (area = 0.96)" for the CNN and "ROC curve (area = 
0.94)" for the RNN.  

The marginal superiority of the CNN can be attributed to its architectural 
strength in processing spatial features within the two-dimensional Mel-
spectrograms. This suggests that the unique timbral textures, harmonic structures, 
and tonal shifts that distinguish Carnatic music are very effectively represented as 
spatial patterns in the time-frequency domain. While the RNN model was highly 
proficient at capturing the sequential and temporal evolution of the music through 
MFCCs, the static spectral information appeared to be a slightly more decisive 
factor in this specific classification task. These findings suggest that future work 
could greatly benefit from hybrid models that combine convolutional layers for 
feature extraction with recurrent layers for sequence modeling, potentially 
creating an even more powerful and holistic classification system. 
 
CONCLUSION  

In conclusion, this study successfully demonstrates that both CNN and RNN 
architectures are highly effective for the classification of Carnatic music. While 
both models yielded strong results, the CNN model achieved a marginally superior 
performance with an accuracy of 95.1% and an ROC-AUC score of 0.96, compared 
to the RNN's 93.8% accuracy and 0.94 ROC-AUC. This finding highlights the critical 
importance of spatial features extracted from Mel-spectrograms in capturing the 
unique tonal and harmonic signatures of this complex musical genre. The clear 
strengths of each architecture—the CNN in spatial analysis and the RNN in 
temporal modeling—strongly suggest that the most promising avenue for future 
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research lies in the development of hybrid frameworks. By combining 
convolutional and recurrent layers, such hybrid models could leverage the best of 
both approaches to achieve an even more robust and nuanced understanding of 
intricate musical forms, significantly contributing to the digital preservation of 
global music heritage. 
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